11,382 research outputs found

    A Machine Learning Approach to Sector Based Market Efficiency

    Get PDF
    In economic circles, there is an idea that the increasing prevalence of algorithmic trading is improving the information efficiency of electronic stock markets. This project sought to test the above theory computationally. If an algorithm can accurately forecast near-term equity prices using historical data, there must be predictive information present in the data. Changes in the predictive accuracy of such algorithms should correlate with increasing or decreasing market efficiency. By using advanced machine learning approaches, including dense neural networks, LSTM, and CNN models, I modified intra day predictive precision to act as a proxy for market efficiency. Allowing for the basic comparisons of the weak form efficiency of four sectors over the same time period: utilities, healthcare, technology and energy. Finally, Within these sectors, I was able to detect inefficiencies in the stock market up to four years closer to modern day than previous studies

    A holistic auto-configurable ensemble machine learning strategy for financial trading

    Get PDF
    Financial markets forecasting represents a challenging task for a series of reasons, such as the irregularity, high fluctuation, noise of the involved data, and the peculiar high unpredictability of the financial domain. Moreover, literature does not offer a proper methodology to systematically identify intrinsic and hyper-parameters, input features, and base algorithms of a forecasting strategy in order to automatically adapt itself to the chosen market. To tackle these issues, this paper introduces a fully automated optimized ensemble approach, where an optimized feature selection process has been combined with an automatic ensemble machine learning strategy, created by a set of classifiers with intrinsic and hyper-parameters learned in each marked under consideration. A series of experiments performed on different real-world futures markets demonstrate the effectiveness of such an approach with regard to both to the Buy and Hold baseline strategy and to several canonical state-of-the-art solutions

    Ensembling and Dynamic Asset Selection for Risk-Controlled Statistical Arbitrage

    Get PDF
    In recent years, machine learning algorithms have been successfully employed to leverage the potential of identifying hidden patterns of financial market behavior and, consequently, have become a land of opportunities for financial applications such as algorithmic trading. In this paper, we propose a statistical arbitrage trading strategy with two key elements: an ensemble of regression algorithms for asset return prediction, followed by a dynamic asset selection. More specifically, we construct an extremely heterogeneous ensemble ensuring model diversity by using state-of-the-art machine learning algorithms, data diversity by using a feature selection process, and method diversity by using individual models for each asset, as well models that learn cross-sectional across multiple assets. Then, their predictive results are fed into a quality assurance mechanism that prunes assets with poor forecasting performance in the previous periods. We evaluate the approach on historical data of component stocks of the SP500 index. By performing an in-depth risk-return analysis, we show that this setup outperforms highly competitive trading strategies considered as baselines. Experimentally, we show that the dynamic asset selection enhances overall trading performance both in terms of return and risk. Moreover, the proposed approach proved to yield superior results during both financial turmoil and massive market growth periods, and it showed to have general application for any risk-balanced trading strategy aiming to exploit different asset classes
    • …
    corecore