664 research outputs found

    Intra-cavity spectroscopy using amplified spontaneous emission in fiber lasers

    Get PDF
    Fiber laser sources offer interesting possibilities for gas sensors since they can operate over an extended wavelength range, encompassing the near-IR absorption lines of a number of important gases but a major problem is that overtone absorption lines of gases in the near-IR are relatively weak. In order to enhance sensitivity, we present here a simple method of intra-cavity absorption spectroscopy (ICAS) which makes use of the amplified spontaneous emission (ASE) already present within a fiber laser cavity. The ASE also provides a convenient broadband source for the simultaneous interrogation of several gases within the gain-bandwidth of the fiber laser. The key principle is based on adjusting the cavity attenuation to select an appropriate inversion level where the fiber gain curve is flat. Under this condition, the ASE undergoes multiple circulations within the fiber laser cavity, enhancing the effective path-length of a gas cell placed within the laser cavity. A theoretical model of system operation is given and we have experimentally demonstrated the principle of operation with acetylene and carbon dioxide using a simple erbium fiber laser system containing a 6 cm path-length, fiber coupled, intra-cavity, micro-optic gas cell. We have experimentally simultaneously observed 16 absorption lines for 1% acetylene gas in the 1530 nm region and detected the very weak carbon dioxide lines in this same wavelength region. A path length enhancement of in the linear regime has been demonstrated transforming the 6 cm micro-optic cell into an effective path length of m. We also demonstrate how the enhancement factor may be calibrated by use of a simple fiber-optic interferometer. Apart from the OSA, all components are inexpensive and the system is very simple to construct and operate

    Multiwavelength operation of erbium-doped fiber lasers by periodic filtering and phase modulation

    Get PDF
    This paper explains the principles behind multiwavelength operation of an erbium-doped fiber laser (EDFL) under the combined effect of cavity phase modulation and periodic wavelength filtering. A mathematical model is developed to simulate the behaviour of the multiwavelength EDFL, both in time and frequency domains. The effects of various parameters such as pump power, filter channel spacing, modulation index and frequency are observed and explained. An all-fiber EDFL was constructed, using a piezo-transducer-based phase modulator and a Sagnac loop periodic filter, to validate the theoretical results. The effects of pump power, modulation frequency and modulation index were monitored experimentally, justifying the theoretical explanation. The multiwavelength EDFL has several potential applications in fiber sensing due to its flexible all-fiber design

    Single polarization, dual wavelength fiber laser based on a 3-stage all fiber lyot filter

    Get PDF
    We have demonstrated a switchable dual wavelength fiber ring laser with a high degree of polarization output by using an intracavity 3-stage all fiber Lyot filter. The filter is formed by concatenating four 45° tilted fiber gratings separated by polarization maintaining fibers with a length ratio of 1:2:4 (20, 40, and 80 cm), giving a compact integrated configuration with reduced bandwidth. Switchable dual wavelength or single wavelength output at 1533.5 and 1563.3 nm has been achieved. The output lasing is considerably stable owing to the in-phase mode-selecting function of the multistage Lyot filter, and has a very high degree of polarization higher than 99.9%

    Large-scale remotely interrogated arrays of fibre-optic interferometric sensors and fibre lasers

    Get PDF
    Abstract unavailable please refer to PD

    Mode locked Erbium doped fiber lasers using 45º tilted fiber grating

    Get PDF
    We have systematically studied the 45º tilted fiber grating (45TFG) as a functional device for Erbium doped fiber laser (EDFL) mode locking. A number of 45TFGs with different polarization dependent loss (PDL) have been fabricated. Mode locked Erbium doped fiber laser using these devices have been characterized in terms of threshold, pulse duration, signal to noise ratio (SNR), and spectral width. Our results show that a 45TFG with higher PDL could achieve better laser results. By using a 45TFG with 24dB PDL, the mode locked laser has 8.1% conversion efficiency and a threshold of 200mW

    Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber

    Get PDF
    We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW

    Detection of nitrous oxide (N2O) at sub-ppmv using intracavity absorption spectroscopy

    Get PDF
    We demonstrate a fiber laser system for the detection of the greenhouse gas, nitrous oxide (N2O), at sub-ppmv concentration levels. The fiber laser is stabilized by a saturable absorber. The sensitivity is enhanced by multiple circulations of amplified spontaneous emission light under threshold conditions, and multi-longitudinal mode oscillation of the laser. An intra-cavity Herriott cell of an effective path length of 30 m was used to detect the P (12) rotational line of N2O at ∼1522.20 nm

    The ultrafast laser inscription of photonic devices for integrated optical applications

    Get PDF
    A study of some key areas in which ultrafast laser inscription may usefully be employed is presented. The thesis includes waveguide inscription in a variety of substrates including passive glass, doped glass and a nonlinear crystal. The work contained can be split into three studies, with some overlap between them. Firstly fused silica glass is used, both in planar substrates and as flat fibre, for the inscription of two sensing elements. The planar substrate is used for a device similar in design to a side-polished fibre and the flat fibre is used for the fabrication of a Bragg grating waveguide array. In the second study, waveguides are inscribed in the nonlinear crystal monoclinic bismuth borate, and used for guided mode second harmonic generation. A novel waveguide design is employed to increase overlap between the pump and second harmonic waveguide modes. The remainder of the thesis investigates the applicability of ultrafast laser inscription to the fabrication of compact modelocked lasers. Lasing is demonstrated, both continuous wave and modelocked, using a laser inscribed erbium doped bismuthate glass waveguide as the gain element. A study is then undertaken into methods of integrating carbon nanotubes, used as saturable absorbers to modelock lasers, into laser inscribed waveguides

    Advanced tilted fiber gratings and their applications

    Get PDF
    This thesis presents a detailed numerical analysis, fabrication method and experimental investigation on 45º tilted fiber gratings (45º-TFGs) and excessively tilted fiber gratings (Ex-TFGs), and their applications in fiber laser and sensing systems. The one of the most significant contributions of the work reported in this thesis is that the 45º-TFGs with high polarization extinction ratio (PER) have been fabricated in single mode telecom and polarization maintaining (PM) fibers with spectral response covering three prominent optic communication and central wavelength ranges at 1060nm, 1310nm and 1550nm. The most achieved PERs for the 45º-TFGs are up to and greater than 35-50dB, which have reached and even exceeded many commercial in-fiber polarizers. It has been proposed that the 45º-TFGs of high PER can be used as ideal in-fiber polarizers for a wide range of fiber systems and applications. In addition, in-depth detailed theoretical models and analysis have been developed and systematic experimental evaluation has been conducted producing results in excellent agreement with theoretical modeling. Another important outcome of the research work is the proposal and demonstration of all fiber Lyot filters (AFLFs) implemented by utilizing two (for a single stage type) and more (for multi-stage) 45º-TFGs in PM fiber cavity structure. The detailed theoretical analysis and modelling of such AFLFs have also been carried out giving design guidance for the practical implementation. The unique function advantages of 45º-TFG based AFLFs have been revealed, showing high finesse multi-wavelength transmission of single polarization and wide range of tuneability. The temperature tuning results of AFLFs have shown that the AFLFs have 60 times higher thermal sensitivity than the normal FBGs, thus permitting thermal tuning rate of ~8nm/10ºC. By using an intra-cavity AFLF, an all fiber soliton mode locking laser with almost total suppression of siliton sidebands, single polarization output and single/multi-wavelength switchable operation has been demonstrated. The final significant contribution is the theoretical analysis and experimental verification on the design, fabrication and sensing application of Ex-TFGs. The Ex-TFG sensitivity model to the surrounding medium refractive index (SRI) has been developed for the first time, and the factors that affect the thermal and SRI sensitivity in relation to the wavelength range, tilt angle, and the size of cladding have been investigated. As a practical SRI sensor, an 81º-TFG UV-inscribed in the fiber with small (40μm) cladding radius has shown an SRI sensitivity up to 1180nm/RIU in the index of 1.345 range. Finally, to ensure single polarization detection in such an SRI sensor, a hybrid configuration by UV-inscribing a 45º-TFG and an 81º-TFG closely on the same piece of fiber has been demonstrated as a more advanced SRI sensing system
    corecore