41 research outputs found

    Multi-scale and multi-spectral shape analysis: from 2d to 3d

    Get PDF
    Shape analysis is a fundamental aspect of many problems in computer graphics and computer vision, including shape matching, shape registration, object recognition and classification. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the major disadvantage of geometric maps is that it introduces inevitable, large distortions when mapping large, complex and topologically complicated surfaces to a canonical domain. It is demanded for the researchers to construct the scale space directly on the 3D shape. To address these research issues, in this dissertation, in order to find the multiscale processing for the 3D shape, we start with shape vector image diffusion framework using the geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the implementation and application of Laplacian shape spectrum. In order to construct the scale space on 3D shape directly, we present a novel idea to solve the diffusion equation using the manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the point-based manifold harmonics, we rigorously derive our solution from the diffusion equation which is the essential of the scale space processing on the manifold. Built upon the point-based manifold harmonics transform, we generalize the diffusion function directly on the point clouds to create the scale space. In virtue of the multiscale structure from the scale space, we can detect the feature points and construct the descriptor based on the local neighborhood. As a result, multiscale shape analysis directly on the 3D shape can be achieved

    Multilabel region classification and semantic linking for colon segmentation in CT colonography

    Get PDF
    Accurate and automatic colon segmentation from CT images is a crucial step of many clinical applications in CT colonography, including computer-aided detection (CAD) of colon polyps, 3-D virtual flythrough of the colon, and prone/supine registration. However, the existence of adjacent air-filled organs such as the lung, stomach, and small intestine, and the collapse of the colon due to poor insufflation, render accurate segmentation of the colon a difficult problem. Extra-colonic components can be categorized into two types based on their 3-D connection to the colon: detached and attached extracolonic components (DEC and AEC, respectively). In this paper, we propose graph inference methods to remove extracolonic components to achieve a high quality segmentation. We first decompose each 3-D air-filled object into a set of 3-D regions. A classifier trained with region-level features can be used to identify the colon regions from noncolon regions. After removing obvious DEC, we remove the remaining DEC by modeling the global anatomic structure with an a priori topological constraint and solving a graph inference problem using semantic information provided by a multiclass classifier. Finally, we remove AEC by modeling regions within each 3-D object with a hierarchical conditional random field, solved by graph cut. Experimental results demonstrate that our method outperforms a purely discriminative learning method in detecting true colon regions, while decreasing extra-colonic components in challenging clinical data that includes collapsed cases

    Facilitating Colorectal Cancer Diagnosis with Computed Tomographic Colonography

    Get PDF
    Computed tomographic colonography (CTC) is a diagnostic technique involving helical volume acquisition of the cleansed, distended colorectum to detect colorectal cancer or potentially premalignant polyps. This Thesis summarises the evidence base, identifies areas in need of further research, quantifies sources of bias and presents novel techniques to facilitate colorectal cancer diagnosis using CTC. CTC literature is reviewed to justify the rationale for current implementation and to identify fruitful areas for research. This confirms excellent diagnostic performance can be attained providing CTC is interpreted by trained, experienced observers employing state-of-the-art implementation. The technique is superior to barium enema and consequently, it has been embraced by radiologists, clinicians and health policy-makers. Factors influencing generalisability of CTC research are investigated, firstly with a survey of European educational workshop participants which revealed limited CTC experience and training, followed by a systematic review exploring bias in research studies of diagnostic test accuracy which established that studies focussing on these aspects were lacking. Experiments to address these sources of bias are presented, using novel methodology: Conjoint analysis is used to ascertain patients‘ and clinicians’ attitudes to false-positive screening diagnoses, showing that both groups overwhelmingly value sensitivity over specificity. The results inform a weighted statistical analysis for CAD which is applied to the results of two previous studies showing the incremental benefit is significantly higher for novices than experienced readers. We have employed eye-tracking technology to establish the visual search patterns of observers reading CTC, demonstrated feasibility and developed metrics for analysis. We also describe development and validation of computer software to register prone and supine endoluminal surface locations demonstrating accurate matching of corresponding points when applied to a phantom and a generalisable, publically available, CTC database. Finally, areas in need of future development are suggested

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps

    Eye-tracking the moving medical image: Development and investigation of a novel investigational tool for CT Colonography

    Get PDF
    Colorectal cancer remains the third most common cancer in the UK but the second leading cause of cancer death with >16,000 dying per year. Many advances have been made in recent years in all areas of investigation for colorectal cancer, one of the more notable being the widespread introduction of CT Colonography (CTC). CTC has rapidly established itself as a cornerstone of diagnosis for colonic neoplasia and much work has been done to standardise and assure quality in practice in both the acquisition and interpretation of the technique. A novel feature of CTC is the presentation of imaging in both traditional 2D and the ‘virtual’ 3D endoluminal formats. This thesis looks at expanding our understanding of and improving our performance in utilizing the endoluminal 3D view. We present and develop novel metrics applicable to eye-tracking the moving image, so that the complex dynamic nature of 3D endoluminal fly-through interpretation can be captured. These metrics are then applied to assess the effect of important elements of image interpretation, namely, reader experience, the effect of the use Computer Aided Detection (CAD) and the influence of the expected prevalence of abnormality. We review our findings with reference to the literature of eye tracking within medical imaging. In the co-registration section we apply our validated computer-assisted registration algorithm to the matching of 3D endoluminal colonic locations between temporally separate datasets, assessing its accuracy as an aid to colonic polyp surveillance with CTC

    ESGAR 2011 Book of Abstracts

    Get PDF

    Computer-aided detection of polyps in CT colonography

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore