111 research outputs found

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    TD-SCDMA Relay Networks

    Get PDF
    PhDWhen this research was started, TD-SCDMA (Time Division Synchronous Code Division Multiple Access) was still in the research/ development phase, but now, at the time of writing this thesis, it is in commercial use in 10 large cities in China including Beijing and Shang Hai. In all of these cities HSDPA is enabled. The roll-out of the commercial deployment is progressing fast with installations in another 28 cities being underway now. However, during the pre-commercial TD-SCDM trail in China, which started from year 2006, some interference problems have been noticed especially in the network planning and initialization phases. Interference is always an issue in any network and the goal of the work reported in this thesis is to improve network coverage and capacity in the presence of interference. Based on an analysis of TD-SCDMA issues and how network interference arises, this thesis proposes two enhancements to the network in addition to the standard N-frequency technique. These are (i) the introduction of the concentric circle cell concept and (ii) the addition of a relay network that makes use of other users at the cell boundary. This overall approach not only optimizes the resilience to interference but increases the network coverage without adding more Node Bs. Based on the cell planning parameters from the research, TD-SCDMA HSDPA services in dense urban area and non-HSDPA services in rural areas were simulated to investigate the network performance impact after introducing the relay network into a TD-SCDMA network. The results for HSDPA applications show significant improvement in the TDSCDMA relay network both for network capacity and network interference aspects compared to standard TD-SCDMA networks. The results for non- HSDPA service show that although the network capacity has not changed after adding in the relay network (due to the code limitation in TD-SCDMA), the TD-SCDMA relay network has better interference performance and greater coverage

    An intelligent-agent approach for managing congestion in W-CDMA networks

    Get PDF
    PhDResource Management is a crucial aspect in the next generation cellular networks since the use of W-CDMA technology gives an inherent flexibility in managing the system capacity. The concept of a “Service Level Agreement” (SLA) also plays a very important role as it is the means to guarantee the quality of service provided to the customers in response to the level of service to which they have subscribed. Hence there is a need to introduce effective SLA-based policies as part of the radio resource management. This work proposes the application of intelligent agents in SLA-based control in resource management, especially when congestion occurs. The work demonstrates the ability of intelligent agents in improving and maintaining the quality of service to meet the required SLA as the congestion occurs. A particularly novel aspect of this work is the use of learning (here Case Based Reasoning) to predict the control strategies to be imposed. As the system environment changes, the most suitable policy will be implemented. When congestion occurs, the system either proposes the solution by recalling from experience (if the event is similar to what has been previously solved) or recalculates the solution from its knowledge (if the event is new). With this approach, the system performance will be monitored at all times and a suitable policy can be immediately applied as the system environment changes, resulting in maintaining the system quality of service

    THROUGHPUT OPTIMIZATION AND ENERGY EFFICIENCY OF THE DOWNLINK IN THE LTE SYSTEM

    Get PDF
    Nowadays, the usage of smart phones is very popular. More and more people access the Internet with their smart phones. This demands higher data rates from the mobile network operators. Every year the number of users and the amount of information is increasing dramatically. The wireless technology should ensure high data rates to be able to compete with the wire-based technology. The main advantage of the wireless system is the ability for user to be mobile. The 4G LTE system made it possible to gain very high peak data rates. The purpose of this thesis was to investigate the improvement of the system performance for the downlink based on different antenna configurations and different scheduling algorithms. Moreover, the fairness between the users using different schedulers has been analyzed and evaluated. Furthermore, the energy efficiency of the scheduling algorithms in the downlink of LTE systems has been considered. Some important parts of the LTE system are described in the theoretical part of this thesis.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçÔesCoordenação MulticĂ©lula Ă© um tĂłpico de investigação em rĂĄpido crescimento e uma solução promissora para controlar a interferĂȘncia entre cĂ©lulas em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia jĂĄ estĂĄ em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem vĂĄrias abordagens sobre coordenação multicĂ©lula, dependendo da quantidade e do tipo de informação partilhada pelas estaçÔes base, atravĂ©s da rede de suporte (backhaul network), e do local onde essa informação Ă© processada, i.e., numa unidade de processamento central ou de uma forma distribuĂ­da em cada estação base. Nesta tese, sĂŁo propostas tĂ©cnicas de prĂ©-codificação e alocação de potĂȘncia considerando vĂĄrias estratĂ©gias: centralizada, todo o processamento Ă© feito na unidade de processamento central; semidistribuĂ­da, neste caso apenas parte do processamento Ă© executado na unidade de processamento central, nomeadamente a potĂȘncia alocada a cada utilizador servido por cada estação base; e distribuĂ­da em que o processamento Ă© feito localmente em cada estação base. Os esquemas propostos sĂŁo projectados em duas fases: primeiro sĂŁo propostas soluçÔes de prĂ©-codificação para mitigar ou eliminar a interferĂȘncia entre cĂ©lulas, de seguida o sistema Ă© melhorado atravĂ©s do desenvolvimento de vĂĄrios esquemas de alocação de potĂȘncia. SĂŁo propostas trĂȘs esquemas de alocação de potĂȘncia centralizada condicionada a cada estação base e com diferentes relaçÔes entre desempenho e complexidade. SĂŁo tambĂ©m derivados esquemas de alocação distribuĂ­dos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vĂĄrios sistemas com uma Ășnica cĂ©lula. Com base neste conceito foi definido uma taxa de erro mĂ©dia virtual para cada um desses sistemas de cĂ©lula Ășnica que compĂ”em o sistema multicelular, permitindo assim projectar esquemas de alocação de potĂȘncia completamente distribuĂ­dos. Todos os esquemas propostos foram avaliados em cenĂĄrios realistas, bastante prĂłximos dos considerados no LTE. Os resultados mostram que os esquemas propostos sĂŁo eficientes a remover a interferĂȘncia entre cĂ©lulas e que o desempenho das tĂ©cnicas de alocação de potĂȘncia propostas Ă© claramente superior ao caso de nĂŁo alocação de potĂȘncia. O desempenho dos sistemas completamente distribuĂ­dos Ă© inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte nĂŁo permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Macro Diversity Combining Optimization in HSPA flat architecture

    Get PDF
    This thesis, Macro Diversity Combining Optimization in High Speed Packet Access (HSPA) flat architecture, concentrates on analyzing implementation alternatives of Marco Diversity Combining (MDC) in fiat architecture. When centralized elements, like Radio Network Controller (RNC), are removed from the architecture, centralized functionalities need to be implemented differently. One of the most important centralized functionality is Macro Diversity Combining which collects traffic from multiple base stations and improves radio performance like bit rate and coverage area. When this functionality is implemented inside base station traffic needs to be sent between base stations. Traffic between base stations creates new requirements for transport network and potentially also increases operator transport cost. In short, if MDC is fully implemented, traffic between base stations is maximized and opposite, if MDC is left out, radio performance is reduced. The thesis starts with the overview introduction of Universal Mobile Telecommunication System (UMTS) network. Here we discuss the architecture of the UMTS packets switched network, and the main functionalities of the Radio Resource Management (RRM): power control and handover control. A deeper look is taken into evolution of 3GPP packet access namely High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Data Access (HSUPA) plus the relevant HSDPA cell change and HSUPA handovers are covered. A short glance is also taken into the gains introduced by MDC. In this thesis four proposals presented in 3GPP to improve the MDC with regards to utilization of transport network, implementation complexity, radio performance, latency and amount of additions to existing 3GPP specifications are evaluated. Finally, an implementation alternative for MDC optimization in flat architecture is presented based on the proposals in 3GPP
    • 

    corecore