22,640 research outputs found

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    Intra-WZ quantization mismatch in distributed video coding

    Get PDF
    During the past decade, Distributed Video Coding (DVC) has emerged as a new video coding paradigm, shifting the complexity from the encoder-to the decoder-side. This paper addresses a problem of current DVC architectures that has not been studied in the literature so far, that is, the mismatch between the intra and Wyner-Ziv (WZ) quantization processes. Due to this mismatch, WZ rate is spent even for spatial regions that are accurately approximated by the side-information. As a solution, this paper proposes side-information generation using selective unidirectional motion compensation from temporally adjacent WZ frames. Experimental results show that the proposed approach yields promising WZ rate gains of up to 7% relative to the conventional method

    Steerable Discrete Cosine Transform

    Get PDF
    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms
    • …
    corecore