40,038 research outputs found

    Localization under consistent assumptions over dynamics

    Full text link
    Accurate maps are a prerequisite for virtually all autonomous vehicle tasks. Most state-of-the-art maps assume a static world, and therefore dynamic objects are filtered out of the measurements. However, this division ignores movable but non-moving, i.e. semi-static, objects, which are usually recorded in the map and treated as static objects, violating the static world assumption, causing error in the localization. In this paper, we present a method for modeling moving and movable objects for matching the map and the measurements consistently. This reduces the error resulting from inconsistent categorization and treatment of non-static measurements. A semantic segmentation network is used to categorize the measurements into static and semi-static classes, and a background subtraction-based filtering method is used to remove dynamic measurements. Experimental comparison against a state-of-the-art baseline solution using real-world data from Oxford Radar RobotCar data set shows that consistent assumptions over dynamics increase localization accuracy.Comment: Submitted to IEEE-ICRA-202

    Physics-based Motion Planning with Temporal Logic Specifications

    Get PDF
    One of the main foci of robotics is nowadays centered in providing a great degree of autonomy to robots. A fundamental step in this direction is to give them the ability to plan in discrete and continuous spaces to find the required motions to complete a complex task. In this line, some recent approaches describe tasks with Linear Temporal Logic (LTL) and reason on discrete actions to guide sampling-based motion planning, with the aim of finding dynamically-feasible motions that satisfy the temporal-logic task specifications. The present paper proposes an LTL planning approach enhanced with the use of ontologies to describe and reason about the task, on the one hand, and that includes physics-based motion planning to allow the purposeful manipulation of objects, on the other hand. The proposal has been implemented and is illustrated with didactic examples with a mobile robot in simple scenarios where some of the goals are occupied with objects that must be removed in order to fulfill the task.Comment: The 20th World Congress of the International Federation of Automatic Control, 9-14 July 201
    • …
    corecore