6 research outputs found

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage für die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies führte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollständige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus während des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme führte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen führten zu einer beträchtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich größere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg für die Durchführung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche Datensätze von besserer Qualität produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow für die Röntgendatenanalyse, welcher eine solche Datenlast bewältigen und wertvolle Erkenntnisse für die Fachexperten liefern kann. Die bestehenden Lösungen für einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie für Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht für Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten Beiträge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der für die effiziente Verarbeitung heterogener Röntgendatensätze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter für den spezifischen Datensatz zu finden. Für die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine präzisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden gründlich an synthetischen Datensätzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von Datensätzen ähnlicher Art zu verarbeiten. Darüber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module für die Sprache Python zur Verfügung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich für Mikro-CT-Datensätze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf für die Analyse der Medaka-Fisch-Datensätze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. Darüber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von Polymergerüst-Datensätzen eingesetzt, um einen Herstellungsprozess in Richtung wünschenswerter Eigenschaften zu lenken

    Image Quality Assessment for Population Cardiac MRI: From Detection to Synthesis

    Get PDF
    Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. Left Ventricular (LV) cardiac anatomy and function are widely used for diagnosis and monitoring disease progression in cardiology and to assess the patient's response to cardiac surgery and interventional procedures. For population imaging studies, CMR is arguably the most comprehensive imaging modality for non-invasive and non-ionising imaging of the heart and great vessels and, hence, most suited for population imaging cohorts. Due to insufficient radiographer's experience in planning a scan, natural cardiac muscle contraction, breathing motion, and imperfect triggering, CMR can display incomplete LV coverage, which hampers quantitative LV characterization and diagnostic accuracy. To tackle this limitation and enhance the accuracy and robustness of the automated cardiac volume and functional assessment, this thesis focuses on the development and application of state-of-the-art deep learning (DL) techniques in cardiac imaging. Specifically, we propose new image feature representation types that are learnt with DL models and aimed at highlighting the CMR image quality cross-dataset. These representations are also intended to estimate the CMR image quality for better interpretation and analysis. Moreover, we investigate how quantitative analysis can benefit when these learnt image representations are used in image synthesis. Specifically, a 3D fisher discriminative representation is introduced to identify CMR image quality in the UK Biobank cardiac data. Additionally, a novel adversarial learning (AL) framework is introduced for the cross-dataset CMR image quality assessment and we show that the common representations learnt by AL can be useful and informative for cross-dataset CMR image analysis. Moreover, we utilize the dataset invariance (DI) representations for CMR volumes interpolation by introducing a novel generative adversarial nets (GANs) based image synthesis framework, which enhance the CMR image quality cross-dataset

    Automatic image analysis of C-arm Computed Tomography images for ankle joint surgeries

    Get PDF
    Open reduction and internal fixation is a standard procedure in ankle surgery for treating a fractured fibula. Since fibula fractures are often accompanied by an injury of the syndesmosis complex, it is essential to restore the correct relative pose of the fibula relative to the adjoining tibia for the ligaments to heal. Otherwise, the patient might experience instability of the ankle leading to arthritis and ankle pain and ultimately revision surgery. Incorrect positioning referred to as malreduction of the fibula is assumed to be one of the major causes of unsuccessful ankle surgery. 3D C-arm imaging is the current standard procedure for revealing malreduction of fractures in the operating room. However, intra-operative visual inspection of the reduction result is complicated due to high inter-individual variation of the ankle anatomy and rather based on the subjective experience of the surgeon. A contralateral side comparison with the patient’s uninjured ankle is recommended but has not been integrated into clinical routine due to the high level of radiation exposure it incurs. This thesis presents the first approach towards a computer-assisted intra-operative contralateral side comparison of the ankle joint. The focus of this thesis was the design, development and validation of a software-based prototype for a fully automatic intra-operative assistance system for orthopedic surgeons. The implementation does not require an additional 3D C-arm scan of the uninjured ankle, thus reducing time consumption and cumulative radiation dose. A 3D statistical shape model (SSM) is used to reconstruct a 3D surface model from three 2D fluoroscopic projections representing the uninjured ankle. To this end, a 3D SSM segmentation is performed on the 3D image of the injured ankle to gain prior knowledge of the ankle. A 3D convolutional neural network (CNN) based initialization method was developed and its outcome was incorporated into the SSM adaption step. Segmentation quality was shown to be improved in terms of accuracy and robustness compared to the pure intensity-based SSM. This allows us to overcome the limitations of the previously proposed methods, namely inaccuracy due to metal artifacts and the lack of device-to-patient orientation of the C-arm. A 2D-CNN is employed to extract semantic knowledge from all fluoroscopic projection images. This step of the pipeline both creates features for the subsequent reconstruction and also helps to pre-initialize the 3D-SSM without user interaction. A 2D-3D multi-bone reconstruction method has been developed which uses distance maps of the 2D features for fast and accurate correspondence optimization and SSM adaption. This is the central and most crucial component of the workflow. This is the first time that a bone reconstruction method has been applied to the complex ankle joint and the first reconstruction method using CNN based segmentations as features. The reconstructed 3D-SSM of the uninjured ankle can be back-projected and visualized in a workflow-oriented manner to procure clear visualization of the region of interest, which is essential for the evaluation of the reduction result. The surgeon can thus directly compare an overlay of the contralateral ankle with the injured ankle. The developed methods were evaluated individually using data sets acquired during a cadaver study and representative clinical data acquired during fibular reduction. A hierarchical evaluation was designed to assess the inaccuracies of the system on different levels and to identify major sources of error. The overall evaluation performed on eleven challenging clinical datasets acquired for manual contralateral side comparison showed that the system is capable of accurately reconstructing 3D surface models of the uninjured ankle solely using three projection images. A mean Hausdorff distance of 1.72 mm was measured when comparing the reconstruction result to the ground truth segmentation and almost achieved the high required clinical accuracy of 1-2 mm. The overall error of the pipeline was mainly attributed to inaccuracies in the 2D-CNN segmentation. The consistency of these results requires further validation on a larger dataset. The workflow proposed in this thesis establishes the first approach to enable automatic computer-assisted contralateral side comparison in ankle surgery. The feasibility of the proposed approach was proven on a limited amount of clinical cases and has already yielded good results. The next important step is to alleviate the identified bottlenecks in the approach by providing more training data in order to further improve the accuracy. In conclusion, the new approach presented gives the chance to guide the surgeon during the reduction process, improve the surgical outcome while avoiding additional radiation exposure and reduce the number of revision surgeries in the long term

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore