1,285 research outputs found

    Real-time virtual sonography in gynecology & obstetrics. literature's analysis and case series

    Get PDF
    Fusion Imaging is a latest generation diagnostic technique, designed to combine ultrasonography with a second-tier technique such as magnetic resonance imaging and computer tomography. It has been mainly used until now in urology and hepatology. Concerning gynecology and obstetrics, the studies mostly focus on the diagnosis of prenatal disease, benign pathology and cervical cancer. We provided a systematic review of the literature with the latest publications regarding the role of Fusion technology in gynecological and obstetrics fields and we also described a case series of six emblematic patients enrolled from Gynecology Department of Sant ‘Andrea Hospital, “la Sapienza”, Rome, evaluated with Esaote Virtual Navigator equipment. We consider that Fusion Imaging could add values at the diagnosis of various gynecological and obstetrics conditions, but further studies are needed to better define and improve the role of this fascinating diagnostic tool

    Intraoperative Navigation Systems for Image-Guided Surgery

    Get PDF
    Recent technological advancements in medical imaging equipment have resulted in a dramatic improvement of image accuracy, now capable of providing useful information previously not available to clinicians. In the surgical context, intraoperative imaging provides a crucial value for the success of the operation. Many nontrivial scientific and technical problems need to be addressed in order to efficiently exploit the different information sources nowadays available in advanced operating rooms. In particular, it is necessary to provide: (i) accurate tracking of surgical instruments, (ii) real-time matching of images from different modalities, and (iii) reliable guidance toward the surgical target. Satisfying all of these requisites is needed to realize effective intraoperative navigation systems for image-guided surgery. Various solutions have been proposed and successfully tested in the field of image navigation systems in the last ten years; nevertheless several problems still arise in most of the applications regarding precision, usability and capabilities of the existing systems. Identifying and solving these issues represents an urgent scientific challenge. This thesis investigates the current state of the art in the field of intraoperative navigation systems, focusing in particular on the challenges related to efficient and effective usage of ultrasound imaging during surgery. The main contribution of this thesis to the state of the art are related to: Techniques for automatic motion compensation and therapy monitoring applied to a novel ultrasound-guided surgical robotic platform in the context of abdominal tumor thermoablation. Novel image-fusion based navigation systems for ultrasound-guided neurosurgery in the context of brain tumor resection, highlighting their applicability as off-line surgical training instruments. The proposed systems, which were designed and developed in the framework of two international research projects, have been tested in real or simulated surgical scenarios, showing promising results toward their application in clinical practice

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Focal Spot, Spring 2003

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1093/thumbnail.jp

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future

    Get PDF
    none4openZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria FrancescaZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria Francesc

    New frontiers in liver ultrasound: From mono to multi parametricity

    Get PDF
    Modern liver ultrasonography (US) has become a "one-stop shop " able to provide not only anatomic and morphologic but also functional information about vascularity, stiffness and other various liver tissue properties. Modern US techniques allow a quantitative assessment of various liver diseases. US scanning is no more limited to the visualized plane, but three-dimensional, volumetric acquisition and consequent post-processing are also possible. Further, US scan can be consistently merged and visualized in real time with Computed Tomography and Magnetic Resonance Imaging examinations. Effective and safe microbubble-based contrast agents allow a real time, dynamic study of contrast kinetic for the detection and characterization of focal liver lesions. Ultrasound can be used to guide loco-regional treatment of liver malignancies and to assess tumoral response either to interventional procedures or medical therapies. Microbubbles may also carry and deliver drugs under ultrasound exposure. US plays a crucial role in diagnosing, treating and monitoring focal and diffuse liver disease. On the basis of personal experience and literature data, this paper is aimed to review the main topics involving recent advances in the field of liver ultrasound

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness
    corecore