4,600 research outputs found

    Intervals and the deduction of drug binding site models

    Full text link
    In the search for new drugs, it often occurs that the binding affinities of several compounds to a common receptor macromolecule are known experimentally, but the structure of the receptor is not known. This article describes an extraordinarily objective computer algorithm for deducing the important geometric and energetic features of the common binding site, starting only from the chemical structures of the ligands and their observed binding. The user does not have to propose a pharmacophore, guess the bioactive conformations of the ligands, or suggest ways to superimpose the active compounds. The method takes into account conformational flexibility of the ligands, stereospecific binding, diverse or unrelated chemical structures, inaccurate or qualitative binding data, and the possibility that chemically similar ligands may or may not bind to the receptor in similar orientations. The resulting model can be viewed graphically and interpreted in terms of one or more binding regions of the receptor, each preferring to be occupied by various sorts of chemical groups. The model always fits the given data completely and can predict the binding of any other ligand, regardless of chemical structure. The method is an outgrowth of distance geometry and Voronoi polyhedra site modeling but incorporates several novel features. The geometry of the ligand molecules and the site is described in terms of intervals of internal distances. Determining the site model consists of reducing the uncertainty in the interregion distance intervals, and this uncertainty is described as intervals of intervals. Similarly, the given binding affinities and their experimental uncertainties are treated as intervals in the affinity scale. The final site model specifies an entire region of interaction energy parameters that satisfy the training set rather than a single set of parameters. Predicted binding for test compounds results in an interval which, when compared to the experimental interval, may be correct, incorrect, or vague. There is a pervasive ternary logic involved in the assessment of predictions, in the search for a satisfactory model, and in judging whether a given molecule may bind in a particular orientation: true, false, or maybe. The approach is illustrated on an extremely simple artificial example and on a real data set of cocaine analogues binding to a nerve membrane receptor in vitro. © 1995 by John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38288/1/540160412_ftp.pd

    A meta-analysis of protein binding of flucloxacillin in healthy volunteers and hospitalized patients

    Get PDF
    Objectives: The aim of this study was to develop a mechanistic protein-binding model to predict the unbound flucloxacillin concentrations in different patient populations. Methods: A mechanistic protein-binding model was fitted to the data using non-linear mixed-effects modelling. Data were obtained from four datasets, containing 710 paired total and unbound flucloxacillin concentrations from healthy volunteers, non-critically ill and critically ill patients. A fifth dataset with data from hospitalized patients was used for evaluation of our model. The predictive performance of the mechanistic model was evaluated and compared with the calculation of the unbound concentration with a fixed unbound fraction of 5%. Finally, we performed a fit-for-use evaluation, verifying whether the model-predicted unbound flucloxacillin concentrations would lead to clinically incorrect dose adjustments. Results: The mechanistic protein-binding model predicted the unbound flucloxacillin concentrations more accurately than assuming an unbound fraction of 5%. The mean prediction error varied between -26.2% to 27.8% for the mechanistic model and between -30.8% to 83% for calculation with a fixed factor of 5%. The normalized root mean squared error varied between 36.8% and 69% respectively between 57.1% and 134%. Predicting the unbound concentration with the use of the mechanistic model resulted in 6.1% incorrect dose adjustments versus 19.4% if calculated with a fixed unbound fraction of 5%. Conclusions: Estimating the unbound concentration with a mechanistic protein-binding model outperforms the calculation with the use of a fixed protein binding factor of 5%, but neither demonstrates acceptable performance. When performing dose individualization of flucloxacillin, this should be done based on measured unbound concentrations rather than on estimated unbound concentrations from the measured total concentrations. In the absence of an assay for unbound concentrations, the mechanistic binding model should be preferred over assuming a fixed unbound fraction of 5%

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Signal integration by the CYP1A1 promoter - a quantitative study

    Get PDF
    Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns.Pharmacolog
    corecore