205 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Modeling group assessments by means of hesitant fuzzy linguistic term sets

    Get PDF
    Hesitant linguistic term sets have been introduced to capture the human way of reasoning using linguistic expressions involving different levels of precision. In this paper, a lattice structure is provided to the set of hesitant fuzzy linguistic term sets by means of the operations intersection and connected union. In addition, in a group decision making framework, hesitant fuzzy linguistic descriptions are defined to manage situations in which decision makers are assessing different alternatives by means of hesitant fuzzy linguistic term sets. Based on the introduced lattice structure, two distances between hesitant fuzzy linguistic descriptions are defined. These metric structures allow distances between decision makers to be computed. A centroid of the decision making group is proposed for each distance to model group representatives in the considered group decision making framework.Peer ReviewedPostprint (author's final draft

    Classical Dynamic Consensus and Opinion Dynamics Models: A Survey of Recent Trends and Methodologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus reaching is an iterative and dynamic process that supports group decision-making models by guiding decision-makers towards modifying their opinions through a feedback mechanism. Many attempts have been recently devoted to the design of efficient consensus reaching processes, especially when the dynamism is dependent on time, which aims to deal with opinion dynamics models. The emergence of novel methodologies in this field has been accelerated over recent years. In this regard, the present work is concerned with a systematic review of classical dynamic consensus and opinion dynamics models. The most recent trends of both models are identified and the developed methodologies are described in detail. Challenges of each model and open problems are discussed and worthwhile directions for future research are given. Our findings denote that due to technological advancements, a majority of recent literature works are concerned with the large-scale group decision-making models, where the interactions of decision-makers are enabled via social networks. Managing the behavior of decision-makers and consensus reaching with the minimum adjustment cost under social network analysis have been the top priorities for researchers in the design of classical consensus and opinion dynamics models

    A Multi-criteria Picture Fuzzy Decision-making Model for Green Supplier Selection based on Fractional Programming

    Get PDF
    Due to the increasing complexity in green supplier selection, there would be some important issues for expressing inherent uncertainty or imprecision of decision makers’ cognitive information in decision making process. As an extension of intuitionistic fuzzy sets (IFSs) and neutrosophic sets (NSs), picture fuzzy sets (PFSs) can better model and represent the hesitancy and uncertainty of decision makers’ preference information. In this study, an attempt has been made to present a multi-criteria picture fuzzy decision-making model for green supplier selection based on fractional programming. In this approach, the ratings of alternatives and weights of criteria are represented by PFSs and IFSs, respectively. Based on the available information, some pairs of fractional programming models are derived from the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and the proposed biparametric picture fuzzy distance measure to determine the relative closeness coefficient intervals of green suppliers, which are aggregated for the criteria to generate the ranking order of all green suppliers by computing their optimal degrees of membership based on the ranking method of interval numbers. Finally, an example is conducted to validate the effectiveness of the proposed multi-criteria decision making (MCMD) method

    A contribution to consensus modeling in decision-making by means of linguistic assessments

    Get PDF
    Decision-making is an active field of research. Specifically, in recent times, a lot of contributions have been presented on decision-making under linguistic assessments. To tackle this kind of processes, hesitant fuzzy linguistic term sets have been introduced to grasp the uncertainty inherent in human reasoning when expressing preferences. This thesis introduces an extension of the set of hesitant fuzzy linguistic term sets to capture differences between non-compatible assessments. Based on this extension, a distance between linguistic assessments is defined to quantify differences between several opinions. This distance is used in turn to present a representative opinion from a group in a decision-making process. In addition, different consensus measures are introduced to determine the level of agreement or disagreement within a decision-making group and are used to define a decision maker’s profile to keep track of their dissension with respect to the group as well as their level of hesitancy. Furthermore, with the aim of allowing decision makers to choose the linguistic terms that they feel more comfortable with, the concept of free double hierarchy hesitant fuzzy linguistic term set is developed in this thesis. Finally, a new approach of the TOPSIS methodology for processes in which the assessments are given by means of free double hierarchy hesitant fuzzy information is presented to rank alternatives under these circumstances.Postprint (published version

    Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016

    Full text link
    © 2017 The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: “What is the KnoSys community interested in?” and “How does such interest change over time?” are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Triangular Cubic Hesitant Fuzzy Einstein Hybrid Weighted Averaging Operator and Its Application to Decision Making

    Get PDF
    In this paper, triangular cubic hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy Einstein hybrid weighted averaging (TCHFEHWA) operator are proposed. An approach to multiple attribute group decision making with linguistic information is developed based on the TCHFEWA and the TCHFEHWA operators. Furthermore, we establish various properties of these operators and derive the relationship between the proposed operators and the existing aggregation operators. Finally, a numerical example is provided to demonstrate the application of the established approach

    Group Decision-Making Based on Artificial Intelligence: A Bibliometric Analysis

    Get PDF
    Decisions concerning crucial and complicated problems are seldom made by a single person. Instead, they require the cooperation of a group of experts in which each participant has their own individual opinions, motivations, background, and interests regarding the existing alternatives. In the last 30 years, much research has been undertaken to provide automated assistance to reach a consensual solution supported by most of the group members. Artificial intelligence techniques are commonly applied to tackle critical group decision-making difficulties. For instance, experts' preferences are often vague and imprecise; hence, their opinions are combined using fuzzy linguistic approaches. This paper reports a bibliometric analysis of the ample literature published in this regard. In particular, our analysis: (i) shows the impact and upswing publication trend on this topic; (ii) identifies the most productive authors, institutions, and countries; (iii) discusses authors' and journals' productivity patterns; and (iv) recognizes the most relevant research topics and how the interest on them has evolved over the years
    corecore