160 research outputs found

    Probabilistic hesitant fuzzy multiple attribute decisionmaking based on regret theory for the evaluation of venture capital projects

    Get PDF
    The selection of venture capital investment projects is one of the most important decision-making activities for venture capitalists. Due to the complexity of investment market and the limited cognition of people, most of the venture capital investment decision problems are highly uncertain and the venture capitalists are often bounded rational under uncertainty. To address such problems, this article presents an approach based on regret theory to probabilistic hesitant fuzzy multiple attribute decision-making. Firstly, when the information on the occurrence probabilities of all the elements in the probabilistic hesitant fuzzy element (P.H.F.E.) is unknown or partially known, two different mathematical programming models based on water-filling theory and the maximum entropy principle are provided to handle these complex situations. Secondly, to capture the psychological behaviours of venture capitalists, the regret theory is utilised to solve the problem of selection of venture capital investment projects. Finally, comparative analysis with the existing approaches is conducted to demonstrate the feasibility and applicability of the proposed method

    Stochastic multiple attribute decision making with Pythagorean hesitant fuzzy set based on regret theory

    Get PDF
    The objective of this paper is to present an extended approach to address the stochastic multi-attribute decision-making problem. The novelty of this study is to consider the regret behavior of decision makers under a Pythagorean hesitant fuzzy environment. First, the group satisfaction degree of decision-making matrices is used to consider the different preferences of decision-makers. Second, the nonlinear programming model under different statues is provided to compute the weights of attributes. Then, based on the regret theory, a regret value matrix and a rejoice value matrix are constructed. Furthermore, the feasibility and superiority of the developed approach is proven by an illustrative example of selecting an air fighter. Eventually, a comparative analysis with other methods shows the advantages of the proposed methods

    M-generalised q-neutrosophic extension of CoCoSo method

    Get PDF
    Nowadays fuzzy approaches gain popularity to model multi-criteria decision making (MCDM) problems emerging in real-life applications. Modern modelling trends in this field include evaluation of the criteria information uncertainty and vagueness. Traditional neutrosophic sets are considered as the effective tool to express uncertainty of the information. However, in some cases, it cannot cover all recently proposed cases of the fuzzy sets. The m-generalized q-neutrosophic sets (mGqNNs) can effectively deal with this situation. The novel MCDM methodology CoCoSomGqNN is presented in this paper. An illustrative example presents the analysis of the effectiveness of different retrofit strategy selection decisions for the application in the civil engineering industry

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    VIKOR Technique:A Systematic Review of the State of the Art Literature on Methodologies and Applications

    Get PDF
    The main objective of this paper is to present a systematic review of the VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) method in several application areas such as sustainability and renewable energy. This study reviewed a total of 176 papers, published in 2004 to 2015, from 83 high-ranking journals; most of which were related to Operational Research, Management Sciences, decision making, sustainability and renewable energy and were extracted from the “Web of Science and Scopus” databases. Papers were classified into 15 main application areas. Furthermore, papers were categorized based on the nationalities of authors, dates of publications, techniques and methods, type of studies, the names of the journals and studies purposes. The results of this study indicated that more papers on VIKOR technique were published in 2013 than in any other year. In addition, 13 papers were published about sustainability and renewable energy fields. Furthermore, VIKOR and fuzzy VIKOR methods, had the first rank in use. Additionally, the Journal of Expert Systems with Applications was the most significant journal in this study, with 27 publications on the topic. Finally, Taiwan had the first rank from 22 nationalities which used VIKOR technique

    An Extended Single-Valued Neutrosophic Projection-Based Qualitative Flexible Multi-Criteria Decision-Making Method

    Get PDF
    With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order
    corecore