116,192 research outputs found

    Decision blocks: A tool for automating decision making in CLIPS

    Get PDF
    The human capability of making complex decision is one of the most fascinating facets of human intelligence, especially if vague, judgemental, default or uncertain knowledge is involved. Unfortunately, most existing rule based forward chaining languages are not very suitable to simulate this aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring decision block to provide better support for the design and implementation of rule based decision support systems. A language called BIRBAL, which is defined on the top of CLIPS, for the specification of decision blocks, is introduced. Empirical experiments involving the comparison of the length of CLIPS program with the corresponding BIRBAL program for three different applications are surveyed. The results of these experiments suggest that for decision making intensive applications, a CLIPS program tends to be about three times longer than the corresponding BIRBAL program

    The impact of the mode of thought in complex decisions: intuitive decisions are better

    Get PDF
    A number of recent studies have reported that decision quality is enhanced under conditions of inattention or distraction (unconscious thought; Dijksterhuis, 2004; Dijksterhuis and Nordgren, 2006; Dijksterhuis et al., 2006). These reports have generated considerable controversy, for both experimental (problems of replication) and theoretical reasons (interpretation). Here we report the results of four experiments. The first experiment replicates the unconscious thought effect, under conditions that validate and control the subjective criterion of decision quality. The second and third experiments examine the impact of a mode of thought manipulation (without distraction) on decision quality in immediate decisions. Here we find that intuitive or affective manipulations improve decision quality compared to analytic/deliberation manipulations. The fourth experiment combines the two methods (distraction and mode of thought manipulations) and demonstrates enhanced decision quality, in a situation that attempts to preserve ecological validity. The results are interpreted within a framework that is based on two interacting subsystems of decision-making: an affective/intuition based system and an analytic/deliberation system

    Scheduling with partial orders and a causal model

    Get PDF
    In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones
    corecore