33,497 research outputs found

    Synchronization for a class of generalized neural networks with interval time-varying delays and reaction-diffusion terms

    Get PDF
    In this paper, the synchronization problem for a class of generalized neural networks with interval time-varying delays and reaction-diffusion terms is investigated under Dirichlet boundary conditions and Neumann boundary conditions, respectively. Based on Lyapunov stability theory, both delay-derivative-dependent and delay-range-dependent conditions are derived in terms of linear matrix inequalities (LMIs), whose solvability heavily depends on the information of reaction-diffusion terms. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. The obtained synchronization results are easy to check and improve upon the existing ones. In our results, the assumptions for the differentiability and monotonicity on the activation functions are removed. It is assumed that the state delay belongs to a given interval, which means that the lower bound of delay is not restricted to be zero. Finally, the feasibility and effectiveness of the proposed methods is shown by simulation examples

    Improved Delay-Dependent Stability Analysis for Neural Networks with Interval Time-Varying Delays

    Get PDF
    The problem of delay-dependent asymptotic stability analysis for neural networks with interval time-varying delays is considered based on the delay-partitioning method. Some less conservative stability criteria are established in terms of linear matrix inequalities (LMIs) by constructing a new Lyapunov-Krasovskii functional (LKF) in each subinterval and combining with reciprocally convex approach. Moreover, our criteria depend on both the upper and lower bounds on time-varying delay and its derivative, which is different from some existing ones. Finally, a numerical example is given to show the improved stability region of the proposed results

    Stabilization of discrete-time systems with time-varying delay using simple lyapunov-krasovskii functional

    Get PDF
    This thesis studies stabilization of discrete time-delay systems based on Lyapunov-Krasovskii functional. Time-delays frequently occur in various practical systems, such as networked control systems, chemical processes, neural networks, and long transmission lines in pneumatic systems. The different phenomena that cause time-delay are: (a) Time needed to transport mass, energy or information; (b) Time lags get accumulated in great number of low-order systems connected in series; and (c) Sensors, such as analyzers; controllers need some time to implement a complicated control algorithm or process. The presence of delay causes in general performance degradation and may lead to instability within the system First, stability of networked control systems has been studied. Two available stability criteria for linear discrete time systems with interval like time varying delay have been considered. Also a numerical example has been solved and the results of both the stability criteria have been compared. Static output-feedback stabilization of discrete-time system with time-varying delay is studied next. Two stabilization approaches based on the above discussed stability criteria are studied. A numerical example has been solved and simulation results have been obtained for both the approaches. Simulation output indicates that the given stabilization approaches effectively stabilize the system and their performance in terms of achievable delay margin is compared

    Effects of Time-Varying Impulses on Exponential Stability of Inertial BAM Neural Network with Mixed Time-Varying Delays

    Get PDF
    The present article is investigating the effects of time-varying impulses on exponential stability to a unique equilibrium point of inertial BAM neural networks with mixed time-varying delays. A suitable variable transformation is chosen to transform the original system into the system of first order differential equation. The fixed point theory of homeomorphism has been implemented to find the distributed delay-dependent sufficient condition which assured the system has a unique equilibrium point. In order to study the impulsive effects on stability problems, the time-varying impulses including stabilizing and destabilizing impulses are considered with the transformed system. Based on the matrix measure approach and the extended impulsive differential inequality for a time-varying delayed system, we have derived sufficient criteria in matrix measure form which ensure the exponential stability of the system towards an equilibrium point for two classes of activation functions. Further, different convergence rates of the systemā€™s trajectories have been discussed for the cases of time-varying stabilizing and destabilizing impulses using the concept of an average impulsive interval. Finally, the efficiency of the theoretical results has been illustrated by providing two numerical examples

    New Results on Passivity Analysis of Delayed Discrete-Time Stochastic Neural Networks

    Get PDF
    The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay is investigated. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. Two numerical examples are given to show the effectiveness and the benefits of the proposed method

    Stability analysis of impulsive stochastic Cohenā€“Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohenā€“Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohenā€“Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright Ā© 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier LtdThis Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunovā€“Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China (05KJB110154), the NSF of Jiangsu Province of China (BK2006064), and the National Natural Science Foundation of China (10471119)
    • ā€¦
    corecore