31,936 research outputs found

    Counter Machines and Distributed Automata: A Story about Exchanging Space and Time

    Full text link
    We prove the equivalence of two classes of counter machines and one class of distributed automata. Our counter machines operate on finite words, which they read from left to right while incrementing or decrementing a fixed number of counters. The two classes differ in the extra features they offer: one allows to copy counter values, whereas the other allows to compute copyless sums of counters. Our distributed automata, on the other hand, operate on directed path graphs that represent words. All nodes of a path synchronously execute the same finite-state machine, whose state diagram must be acyclic except for self-loops, and each node receives as input the state of its direct predecessor. These devices form a subclass of linear-time one-way cellular automata.Comment: 15 pages (+ 13 pages of appendices), 5 figures; To appear in the proceedings of AUTOMATA 2018

    Probabilistic Computability and Choice

    Get PDF
    We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.Comment: Information and Computation (accepted for publication

    The quantum speed up as advanced knowledge of the solution

    Full text link
    With reference to a search in a database of size N, Grover states: "What is the reason that one would expect that a quantum mechanical scheme could accomplish the search in O(square root of N) steps? It would be insightful to have a simple two line argument for this without having to describe the details of the search algorithm". The answer provided in this work is: "because any quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information that specifies the solution of the problem". This empirical fact, unnoticed so far, holds for both quadratic and exponential speed ups and is theoretically justified in three steps: (i) once the physical representation is extended to the production of the problem on the part of the oracle and to the final measurement of the computer register, quantum computation is reduction on the solution of the problem under a relation representing problem-solution interdependence, (ii) the speed up is explained by a simple consideration of time symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution; this advanced knowledge of the solution reduces the size of the solution space to be explored by the algorithm, (iii) if I is the information acquired by measuring the content of the computer register at the end of the algorithm, the quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of I, which brings us to the initial statement.Comment: 23 pages, to be published in IJT

    Sleep Analytics and Online Selective Anomaly Detection

    Full text link
    We introduce a new problem, the Online Selective Anomaly Detection (OSAD), to model a specific scenario emerging from research in sleep science. Scientists have segmented sleep into several stages and stage two is characterized by two patterns (or anomalies) in the EEG time series recorded on sleep subjects. These two patterns are sleep spindle (SS) and K-complex. The OSAD problem was introduced to design a residual system, where all anomalies (known and unknown) are detected but the system only triggers an alarm when non-SS anomalies appear. The solution of the OSAD problem required us to combine techniques from both machine learning and control theory. Experiments on data from real subjects attest to the effectiveness of our approach.Comment: Submitted to 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset

    The Parameterized Complexity of Domination-type Problems and Application to Linear Codes

    Full text link
    We study the parameterized complexity of domination-type problems. (sigma,rho)-domination is a general and unifying framework introduced by Telle: a set D of vertices of a graph G is (sigma,rho)-dominating if for any v in D, |N(v)\cap D| in sigma and for any $v\notin D, |N(v)\cap D| in rho. We mainly show that for any sigma and rho the problem of (sigma,rho)-domination is W[2] when parameterized by the size of the dominating set. This general statement is optimal in the sense that several particular instances of (sigma,rho)-domination are W[2]-complete (e.g. Dominating Set). We also prove that (sigma,rho)-domination is W[2] for the dual parameterization, i.e. when parameterized by the size of the dominated set. We extend this result to a class of domination-type problems which do not fall into the (sigma,rho)-domination framework, including Connected Dominating Set. We also consider problems of coding theory which are related to domination-type problems with parity constraints. In particular, we prove that the problem of the minimal distance of a linear code over Fq is W[2] for both standard and dual parameterizations, and W[1]-hard for the dual parameterization. To prove W[2]-membership of the domination-type problems we extend the Turing-way to parameterized complexity by introducing a new kind of non deterministic Turing machine with the ability to perform `blind' transitions, i.e. transitions which do not depend on the content of the tapes. We prove that the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing Machine is W[2]-complete. We believe that this new machine can be used to prove W[2]-membership of other problems, not necessarily related to dominationComment: 19 pages, 2 figure
    corecore