5,115 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust fault detection for vehicle lateral dynamics: Azonotope-based set-membership approach

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this work, a model-based fault detection layoutfor vehicle lateral dynamics system is presented. The majorfocus in this study is on the handling of model uncertainties andunknown inputs. In fact, the vehicle lateral model is affectedby several parameter variations such as longitudinal velocity,cornering stiffnesses coefficients and unknown inputs like windgust disturbances. Cornering stiffness parameters variation isconsidered to be unknown but bounded with known compactset. Their effect is addressed by generating intervals for theresiduals based on the zonotope representation of all possiblevalues. The developed fault detection procedure has been testedusing real driving data acquired from a prototype vehicle.Index Terms— Robust fault detection, interval models,zonotopes, set-membership, switched uncertain systems, LMIs,input-to-state stability, arbitrary switching.Peer ReviewedPostprint (author's final draft

    Sampled-data sliding mode observer for robust fault reconstruction: A time-delay approach

    Get PDF
    A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches

    Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems

    Get PDF
    International audienceThis work is devoted to fault estimation of discrete-time Linear Parameter-Varying (LPV) systems subject to actuator additive faults and external disturbances. Under the assumption that the measurement noises and the disturbances are unknown but bounded, an interval observer is designed, based on decoupling the fault effect, to compute a lower and upper bounds for the unmeasured state and the faults. Stability conditions are expressed in terms of matrices inequalities. A case study is used to illustrate the effectiveness of the proposed approach

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    On the synthesis of an integrated active LPV FTC scheme using sliding modes

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThis paper proposes an integrated fault tolerant control scheme for a class of systems, modelled in a linear parameter-varying (LPV) framework and subject to sensor faults. The gain in the LPV sliding mode observer (SMO) and the gain in the LPV static feedback controller are synthesized simultaneously to optimize the performance of the closed-loop system in an L2 sense. In the proposed scheme, the sensor faults are reconstructed by the SMO and these estimates are subsequently used to compensate the corrupted sensor measurements before they are used by the feedback controller. To address the synthesis problem, an iterative algorithm is proposed based on a diagonalization of the closed-loop Lyapunov matrix at each iteration. As a result the NP-hard, non-convex linear parameter-varying bilinear matrix inequality (LPV/BMI) associated with the Bounded Real Lemma formulation, is simplified into a tractable convex LPV/LMI problem. A benchmark scenario, involving the loss of the angle of attack sensor in a civil aircraft, is used as a case study to demonstrate the effectiveness of the scheme.European Commissio

    Model-based sensor supervision inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the manage- ment of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strate- gies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.In recent years, inland navigation networks bene¿t from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.Peer ReviewedPostprint (author's final draft

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    Sensor Fault Estimation Using LPV Sliding Mode Observers with Erroneous Scheduling Parameters

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This paper proposes a linear parameter-varying sliding mode observer for the purpose of simultaneously estimating the system states and reconstructing sensor faults. Furthermore, some of the measured scheduling parameters are also assumed to be unreliable, and the corresponding values used in the observer are adapted to maintain the performance level of the observer. The adaptive algorithm is driven by the ‘equivalent output error injection’ signal associated with the reduced-order sliding motion. Sufficient conditions are given to ensure asymptotic stability of the state estimation error system, ensuring both the state estimation errors and the estimation errors associated with the scheduling parameters converge to zero. The efficacy of the scheme has been evaluated based upon an industrial high-fidelity aircraft benchmark scenario involving a simultaneous total loss of airspeed and angle of attack measurements
    • …
    corecore