124 research outputs found

    Interval non-edge-colorable bipartite graphs and multigraphs

    Full text link
    An edge-coloring of a graph GG with colors 1,...,t1,...,t is called an interval tt-coloring if all colors are used, and the colors of edges incident to any vertex of GG are distinct and form an interval of integers. In 1991 Erd\H{o}s constructed a bipartite graph with 27 vertices and maximum degree 13 which has no interval coloring. Erd\H{o}s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph which is not interval colorable. On the other hand, in 1992 Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this paper we give some methods for constructing of interval non-edge-colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs which have no interval coloring, contain 20,19,21 vertices and have maximum degree 11,12,13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.Comment: 18 pages, 7 figure

    Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees

    Get PDF
    An edge coloring of a graph G is called interval edge coloring if for each v ? V(G) the set of colors on edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by ?\u27_i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite graph G is called (?,?)-biregular if each vertex in one part has degree ? and each vertex in the other part has degree ?. A graph G is called (?*,?*)-bipartite if G is a subgraph of an (?,?)-biregular graph and the maximum degree in one part is ? and the maximum degree in the other part is ?. In the paper we study the problem of interval edge colorings of (k*,2*)-bipartite graphs, for k ? {3,4,5}, and of (5*,3*)-bipartite graphs. We prove that every (5*,2*)-bipartite graph admits an interval edge coloring using at most 6 colors, which can be found in O(n^{3/2}) time, and we prove that an interval edge 5-coloring of a (5*,2*)-bipartite graph can be found in O(n^{3/2}) time, if it exists. We show that every (4^*,2^*)-bipartite graph admits an interval edge 4-coloring, which can be found in O(n) time. The two following problems of interval edge coloring are known to be NP-complete: 6-coloring of (6,3)-biregular graphs (Asratian and Casselgren (2006)) and 5-coloring of (5*,5*)-bipartite graphs (Giaro (1997)). In the paper we prove NP-completeness of 5-coloring of (5*,3*)-bipartite graphs

    Some results on the palette index of graphs

    Full text link
    Given a proper edge coloring φ\varphi of a graph GG, we define the palette SG(v,φ)S_{G}(v,\varphi) of a vertex vV(G)v \in V(G) as the set of all colors appearing on edges incident with vv. The palette index sˇ(G)\check s(G) of GG is the minimum number of distinct palettes occurring in a proper edge coloring of GG. In this paper we give various upper and lower bounds on the palette index of GG in terms of the vertex degrees of GG, particularly for the case when GG is a bipartite graph with small vertex degrees. Some of our results concern (a,b)(a,b)-biregular graphs; that is, bipartite graphs where all vertices in one part have degree aa and all vertices in the other part have degree bb. We conjecture that if GG is (a,b)(a,b)-biregular, then sˇ(G)1+max{a,b}\check{s}(G)\leq 1+\max\{a,b\}, and we prove that this conjecture holds for several families of (a,b)(a,b)-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices
    corecore