293,918 research outputs found

    A Characterization of Mixed Unit Interval Graphs

    Full text link
    We give a complete characterization of mixed unit interval graphs, the intersection graphs of closed, open, and half-open unit intervals of the real line. This is a proper superclass of the well known unit interval graphs. Our result solves a problem posed by Dourado, Le, Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde

    Completion of the mixed unit interval graphs hierarchy

    Full text link
    We describe the missing class of the hierarchy of mixed unit interval graphs, generated by the intersection graphs of closed, open and one type of half-open intervals of the real line. This class lies strictly between unit interval graphs and mixed unit interval graphs. We give a complete characterization of this new class, as well as quadratic-time algorithms that recognize graphs from this class and produce a corresponding interval representation if one exists. We also mention that the work in arXiv:1405.4247 directly extends to provide a quadratic-time algorithm to recognize the class of mixed unit interval graphs.Comment: 17 pages, 36 figures (three not numbered). v1 Accepted in the TAMC 2015 conference. The recognition algorithm is faster in v2. One graph was not listed in Theorem 7 of v1 of this paper v3 provides a proposition to recognize the mixed unit interval graphs in quadratic time. v4 is a lot cleare

    Extremal Values of the Interval Number of a Graph

    Get PDF
    The interval number i(G)i( G ) of a simple graph GG is the smallest number tt such that to each vertex in GG there can be assigned a collection of at most tt finite closed intervals on the real line so that there is an edge between vertices vv and ww in GG if and only if some interval for vv intersects some interval for ww. The well known interval graphs are precisely those graphs GG with i(G)1i ( G )\leqq 1. We prove here that for any graph GG with maximum degree d,i(G)12(d+1)d, i ( G )\leqq \lceil \frac{1}{2} ( d + 1 ) \rceil . This bound is attained by every regular graph of degree dd with no triangles, so is best possible. The degree bound is applied to show that i(G)13ni ( G )\leqq \lceil \frac{1}{3}n \rceil for graphs on nn vertices and i(G)ei ( G )\leqq \lfloor \sqrt{e} \rfloor for graphs with ee edges

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio
    corecore