46,678 research outputs found

    Optimal Bandwidth Choice for Interval Estimation in GMM Regression

    Get PDF
    In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically estimated by a kernel method that involves some smoothing process over the sample autocovariances. The underlying parameter (M) that controls this tuning process is a bandwidth or truncation lag and it plays a key role in the finite sample properties of tests and the actual coverage properties of the associated confidence intervals. The present paper develops a bandwidth choice rule for M that optimizes the coverage accuracy of interval estimators in the context of linear GMM regression. The optimal bandwidth balances the asymptotic variance with the asymptotic bias of the robust standard error estimator. This approach contrasts with the conventional bandwidth choice rule for nonparametric estimation where the focus is the nonparametric quantity itself and the choice rule balances asymptotic variance with squared asymptotic bias. It turns out that the optimal bandwidth for interval estimation has a different expansion rate and is typically substantially larger than the optimal bandwidth for point estimation of the standard errors. The new approach to bandwidth choice calls for refined asymptotic measurement of the coverage probabilities, which are provided by means of an Edgeworth expansion of the finite sample distribution of the nonparametrically studentized t-statistic. This asymptotic expansion extends earlier work and is of independent interest. A simple plug-in procedure for implementing this optimal bandwidth is suggested and simulations confirm that the new plug-in procedure works well in finite samples. Issues of interval length and false coverage probability are also considered, leading to a secondary approach to bandwidth selection with similar properties.Asymptotic expansion, Bias, Confidence interval, Coverage probability, Edgeworth expansion, Lag kernel, Long run variance, Optimal bandwidth, Spectrum

    Nonparametric Inference via Bootstrapping the Debiased Estimator

    Full text link
    In this paper, we propose to construct confidence bands by bootstrapping the debiased kernel density estimator (for density estimation) and the debiased local polynomial regression estimator (for regression analysis). The idea of using a debiased estimator was recently employed by Calonico et al. (2018b) to construct a confidence interval of the density function (and regression function) at a given point by explicitly estimating stochastic variations. We extend their ideas of using the debiased estimator and further propose a bootstrap approach for constructing simultaneous confidence bands. This modified method has an advantage that we can easily choose the smoothing bandwidth from conventional bandwidth selectors and the confidence band will be asymptotically valid. We prove the validity of the bootstrap confidence band and generalize it to density level sets and inverse regression problems. Simulation studies confirm the validity of the proposed confidence bands/sets. We apply our approach to an Astronomy dataset to show its applicabilityComment: Accepted to the Electronic Journal of Statistics. 64 pages, 6 tables, 11 figure

    Global Nonlinear Kernel Prediction for Large Dataset with a Particle Swarm Optimized Interval Support Vector Regression

    Get PDF
    A new global nonlinear predictor with a particle swarm-optimized interval support vector regression (PSO-ISVR) is proposed to address three issues (viz., kernel selection, model optimization, kernel method speed) encountered when applying SVR in the presence of large data sets. The novel prediction model can reduce the SVR computing overhead by dividing input space and adaptively selecting the optimized kernel functions to obtain optimal SVR parameter by PSO. To quantify the quality of the predictor, its generalization performance and execution speed are investigated based on statistical learning theory. In addition, experiments using synthetic data as well as the stock volume weighted average price are reported to demonstrate the effectiveness of the developed models. The experimental results show that the proposed PSO-ISVR predictor can improve the computational efficiency and the overall prediction accuracy compared with the results produced by the SVR and other regression methods. The proposed PSO-ISVR provides an important tool for nonlinear regression analysis of big data
    • …
    corecore