963 research outputs found

    Optimal scheduling for refueling multiple autonomous aerial vehicles

    Get PDF
    The scheduling, for autonomous refueling, of multiple unmanned aerial vehicles (UAVs) is posed as a combinatorial optimization problem. An efficient dynamic programming (DP) algorithm is introduced for finding the optimal initial refueling sequence. The optimal sequence needs to be recalculated when conditions change, such as when UAVs join or leave the queue unexpectedly. We develop a systematic shuffle scheme to reconfigure the UAV sequence using the least amount of shuffle steps. A similarity metric over UAV sequences is introduced to quantify the reconfiguration effort which is treated as an additional cost and is integrated into the DP algorithm. Feasibility and limitations of this novel approach are also discussed

    Hybridization of Evolutionary Algorithms

    Get PDF
    Evolutionary algorithms are good general problem solver but suffer from a lack of domain specific knowledge. However, the problem specific knowledge can be added to evolutionary algorithms by hybridizing. Interestingly, all the elements of the evolutionary algorithms can be hybridized. In this chapter, the hybridization of the three elements of the evolutionary algorithms is discussed: the objective function, the survivor selection operator and the parameter settings. As an objective function, the existing heuristic function that construct the solution of the problem in traditional way is used. However, this function is embedded into the evolutionary algorithm that serves as a generator of new solutions. In addition, the objective function is improved by local search heuristics. The new neutral selection operator has been developed that is capable to deal with neutral solutions, i.e. solutions that have the different representation but expose the equal values of objective function. The aim of this operator is to directs the evolutionary search into a new undiscovered regions of the search space. To avoid of wrong setting of parameters that control the behavior of the evolutionary algorithm, the self-adaptation is used. Finally, such hybrid self-adaptive evolutionary algorithm is applied to the two real-world NP-hard problems: the graph 3-coloring and the optimization of markers in the clothing industry. Extensive experiments shown that these hybridization improves the results of the evolutionary algorithms a lot. Furthermore, the impact of the particular hybridizations is analyzed in details as well

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc
    • …
    corecore