741 research outputs found

    Intersection representation of digraphs in trees with few leaves

    Full text link
    The leafage of a digraph is the minimum number of leaves in a host tree in which it has a subtree intersection representation. We discuss bounds on the leafage in terms of other parameters (including Ferrers dimension), obtaining a string of sharp inequalities.Comment: 12 pages, 3 included figure

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Covering line graphs with equivalence relations

    Get PDF
    An equivalence graph is a disjoint union of cliques, and the equivalence number eq(G)\mathit{eq}(G) of a graph GG is the minimum number of equivalence subgraphs needed to cover the edges of GG. We consider the equivalence number of a line graph, giving improved upper and lower bounds: 13log2log2χ(G)<eq(L(G))2log2log2χ(G)+2\frac 13 \log_2\log_2 \chi(G) < \mathit{eq}(L(G)) \leq 2\log_2\log_2 \chi(G) + 2. This disproves a recent conjecture that eq(L(G))\mathit{eq}(L(G)) is at most three for triangle-free GG; indeed it can be arbitrarily large. To bound eq(L(G))\mathit{eq}(L(G)) we bound the closely-related invariant σ(G)\sigma(G), which is the minimum number of orientations of GG such that for any two edges e,fe,f incident to some vertex vv, both ee and ff are oriented out of vv in some orientation. When GG is triangle-free, σ(G)=eq(L(G))\sigma(G)=\mathit{eq}(L(G)). We prove that even when GG is triangle-free, it is NP-complete to decide whether or not σ(G)3\sigma(G)\leq 3.Comment: 10 pages, submitted in July 200
    corecore