759 research outputs found

    Improving Sparse Representation-Based Classification Using Local Principal Component Analysis

    Full text link
    Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the training set. Our proposed classification algorithm enlarges the training set by using local principal component analysis to approximate the basis vectors of the tangent hyperplane of the class manifold at each training sample. The dictionary in SRC is replaced by a local dictionary that adapts to the test sample and includes training samples and their corresponding tangent basis vectors. We use a synthetic data set and three face databases to demonstrate that this method can achieve higher classification accuracy than SRC in cases of sparse sampling, nonlinear class manifolds, and stringent dimension reduction.Comment: Published in "Computational Intelligence for Pattern Recognition," editors Shyi-Ming Chen and Witold Pedrycz. The original publication is available at http://www.springerlink.co

    Sharp identification regions in models with convex moment predictions

    Get PDF
    We provide a tractable characterization of the sharp identification region of the parameters θ in a broad class of incomplete econometric models. Models in this class have set valued predictions that yield a convex set of conditional or unconditional moments for the observable model variables. In short, we call these models with convex moment predictions. Examples include static, simultaneous move finite games of complete and incomplete information in the presence of multiple equilibria; best linear predictors with interval outcome and covariate data; and random utility models of multinomial choice in the presence of interval regressors data. Given a candidate value for θ, we establish that the convex set of moments yielded by the model predictions can be represented as the Aumann expectation of a properly defined random set. The sharp identification region of θ, denoted Θ 1, can then be obtained as the set of minimizers of the distance from a properly specified vector of moments of random variables to this Aumann expectation. Algorithms in convex programming can be exploited to efficiently verify whether a candidate θ is in Θ 1. We use examples analyzed in the literature to illustrate the gains in identification and computational tractability afforded by our method. This paper is a revised version of CWP27/09.

    Sharp identification regions in games

    Get PDF
    We study identification in static, simultaneous move finite games of complete information, where the presence of multiple Nash equilibria may lead to partial identification of the model parameters. The identification regions for these parameters proposed in the related literature are known not to be sharp. Using the theory of random sets, we show that the sharp identification region can be obtained as the set of minimizers of the distance from the conditional distribution of game's outcomes given covariates, to the conditional Aumann expectation given covariates of a properly defined random set. This is the random set of probability distributions over action profiles given profit shifters implied by mixed strategy Nash equilibria. The sharp identification region can be approximated arbitrarily accurately through a finite number of moment inequalities based on the support function of the conditional Aumann expectation. When only pure strategy Nash equilibria are played, the sharp identification region is exactly determined by a finite number of moment inequalities. We discuss how our results can be extended to other solution concepts, such as for example correlated equilibrium or rationality and rationalizability. We show that calculating the sharp identification region using our characterization is computationally feasible. We also provide a simple algorithm which finds the set of inequalities that need to be checked in order to insure sharpness. We use examples analyzed in the literature to illustrate the gains in identification afforded by our method.Identification, Random Sets, Aumann Expectation, Support Function, Capacity Functional, Normal Form Games, Inequality Constraints.

    Rigid Transformations for Stabilized Lower Dimensional Space to Support Subsurface Uncertainty Quantification and Interpretation

    Full text link
    Subsurface datasets inherently possess big data characteristics such as vast volume, diverse features, and high sampling speeds, further compounded by the curse of dimensionality from various physical, engineering, and geological inputs. Among the existing dimensionality reduction (DR) methods, nonlinear dimensionality reduction (NDR) methods, especially Metric-multidimensional scaling (MDS), are preferred for subsurface datasets due to their inherent complexity. While MDS retains intrinsic data structure and quantifies uncertainty, its limitations include unstabilized unique solutions invariant to Euclidean transformations and an absence of out-of-sample points (OOSP) extension. To enhance subsurface inferential and machine learning workflows, datasets must be transformed into stable, reduced-dimension representations that accommodate OOSP. Our solution employs rigid transformations for a stabilized Euclidean invariant representation for LDS. By computing an MDS input dissimilarity matrix, and applying rigid transformations on multiple realizations, we ensure transformation invariance and integrate OOSP. This process leverages a convex hull algorithm and incorporates loss function and normalized stress for distortion quantification. We validate our approach with synthetic data, varying distance metrics, and real-world wells from the Duvernay Formation. Results confirm our method's efficacy in achieving consistent LDS representations. Furthermore, our proposed "stress ratio" (SR) metric provides insight into uncertainty, beneficial for model adjustments and inferential analysis. Consequently, our workflow promises enhanced repeatability and comparability in NDR for subsurface energy resource engineering and associated big data workflows.Comment: 30 pages, 17 figures, Submitted to Computational Geosciences Journa

    Knowledge management in optical networks: architecture, methods, and use cases [Invited]

    Get PDF
    © [2019 Optical Society of America]. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.Autonomous network operation realized by means of control loops, where prediction from machine learning (ML) models is used as input to proactively reconfigure individual optical devices or the whole optical network, has been recently proposed to minimize human intervention. A general issue in this approach is the limited accuracy of ML models due to the lack of real data for training the models. Although the training dataset can be complemented with data from lab experiments and simulation, it is probable that once in operation, events not considered during the training phase appear and thus lead to model inaccuracies. A feasible solution is to implement self-learning approaches, where model inaccuracies are used to re-train the models in the field and to spread such data for training models being used for devices of the same type in other nodes in the network. In this paper, we develop the concept of collective self-learning aiming at improving the model’s error convergence time as well as at minimizing the amount of data being shared and stored. To this end, we propose a knowledge management (KM) process and an architecture to support it. Besides knowledge usage, the KM process entails knowledge discovery, knowledge sharing, and knowledge assimilation. Specifically, knowledge sharing and assimilation are based on distributing and combining ML models, so specific methods are proposed for combining models. Two use cases are used to evaluate the proposed KM architecture and methods. Exhaustive simulation results show that model-based KM provides the best error convergence time with reduced data being shared.Peer ReviewedPostprint (author's final draft
    • …
    corecore