7,098 research outputs found

    Interval propagation and search on directed acyclic graphs for numerical constraint solving

    Get PDF
    The fundamentals of interval analysis on directed acyclic graphs (DAGs) for global optimization and constraint propagation have recently been proposed in Schichl and Neumaier (J. Global Optim. 33, 541-562, 2005). For representing numerical problems, the authors use DAGs whose nodes are subexpressions and whose directed edges are computational flows. Compared to tree-based representations [Benhamou etal. Proceedings of the International Conference on Logic Programming (ICLP'99), pp. 230-244. Las Cruces, USA (1999)], DAGs offer the essential advantage of more accurately handling the influence of subexpressions shared by several constraints on the overall system during propagation. In this paper we show how interval constraint propagation and search on DAGs can be made practical and efficient by: (1) flexibly choosing the nodes on which propagations must be performed, and (2) working with partial subgraphs of the initial DAG rather than with the entire graph. We propose a new interval constraint propagation technique which exploits the influence of subexpressions on all the constraints together rather than on individual constraints. We then show how the new propagation technique can be integrated into branch-and-prune search to solve numerical constraint satisfaction problems. This algorithm is able to outperform its obvious contenders, as shown by the experiment

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    On the Prior and Posterior Distributions Used in Graphical Modelling

    Full text link
    Graphical model learning and inference are often performed using Bayesian techniques. In particular, learning is usually performed in two separate steps. First, the graph structure is learned from the data; then the parameters of the model are estimated conditional on that graph structure. While the probability distributions involved in this second step have been studied in depth, the ones used in the first step have not been explored in as much detail. In this paper, we will study the prior and posterior distributions defined over the space of the graph structures for the purpose of learning the structure of a graphical model. In particular, we will provide a characterisation of the behaviour of those distributions as a function of the possible edges of the graph. We will then use the properties resulting from this characterisation to define measures of structural variability for both Bayesian and Markov networks, and we will point out some of their possible applications.Comment: 28 pages, 6 figure

    Ancestral Causal Inference

    Get PDF
    Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.Comment: In Proceedings of Advances in Neural Information Processing Systems 29 (NIPS 2016
    corecore