4,076 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Nonmonotonic Probabilistic Logics between Model-Theoretic Probabilistic Logic and Probabilistic Logic under Coherence

    Full text link
    Recently, it has been shown that probabilistic entailment under coherence is weaker than model-theoretic probabilistic entailment. Moreover, probabilistic entailment under coherence is a generalization of default entailment in System P. In this paper, we continue this line of research by presenting probabilistic generalizations of more sophisticated notions of classical default entailment that lie between model-theoretic probabilistic entailment and probabilistic entailment under coherence. That is, the new formalisms properly generalize their counterparts in classical default reasoning, they are weaker than model-theoretic probabilistic entailment, and they are stronger than probabilistic entailment under coherence. The new formalisms are useful especially for handling probabilistic inconsistencies related to conditioning on zero events. They can also be applied for probabilistic belief revision. More generally, in the same spirit as a similar previous paper, this paper sheds light on exciting new formalisms for probabilistic reasoning beyond the well-known standard ones.Comment: 10 pages; in Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-2002), Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, pages 265-274, Toulouse, France, April 200

    Modeling of Phenomena and Dynamic Logic of Phenomena

    Get PDF
    Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. Modeling field theory (MFT) addresses these challenges in a non-traditional way. The main idea behind MFT is to match levels of uncertainty of the model (also, problem or theory) with levels of uncertainty of the evaluation criterion used to identify that model. When a model becomes more certain, then the evaluation criterion is adjusted dynamically to match that change to the model. This process is called the Dynamic Logic of Phenomena (DLP) for model construction and it mimics processes of the mind and natural evolution. This paper provides a formal description of DLP by specifying its syntax, semantics, and reasoning system. We also outline links between DLP and other logical approaches. Computational complexity issues that motivate this work are presented using an example of polynomial models
    • …
    corecore