29 research outputs found

    Stator turn fault detection by 2nd harmonic in instantaneous power for a triple redundant fault-tolerant PM drive

    Get PDF
    Fast and reliable detection of stator faults is of key importance for fail-safe and fault tolerant machine drives in order to immediately trigger appropriate fault mitigation actions. The paper presents a detailed analytical and experimental analysis of the behavior of a closed loop controlled permanent magnet machine drive under inter-turn fault conditions. It is shown that significant 2nd harmonic components in the dq voltages, currents, instantaneous active power (IAP) and reactive power (IRP) are generated during turn fault conditions. The analyses further show that the increase of the 2nd harmonic in IAP and IRP during fault conditions is comparatively higher than that of voltage and current, making them ideal candidates as turn fault indicators. A turn fault detection technique based on 2nd harmonic in IAP and IRP is implemented and demonstrated for a triple redundant, fault tolerant permanent magnet assisted synchronous reluctance machine (PMA SynRM) drive. The effectiveness of the proposed detection technique over the whole operation region is assessed, demonstrating fast and reliable detection over most of the operating region under both motoring and generating mode

    High Technology Readiness Level Techniques for Brushless Direct Current Motors Failures Detection: A Systematic Review

    Get PDF
    Many papers related to this topic can be found in the bibliography; however, just a modest percentage of the introduced techniques are developed to a Technology Readiness Level (TRL) sufficiently high to be implementable in industrial applications. This paper is focused precisely on the review of this specific topic. The investigation on the state of the art has been carried out as a systematic review, a very rigorous and reliable standardised scientific methodology, and tries to collect the articles which are closer to a possible implementation. This selection has been carefully done with the definition of a series of rules, drawn to represent the adequate level of readiness of fault detection techniques which the various articles propose.Unión Europea (7PM / 2007-2013) / ERC n. 78533

    Real-Time Fault Diagnosis of Permanent Magnet Synchronous Motor and Drive System

    Get PDF
    Permanent Magnet Synchronous Motors (PMSMs) have gained massive popularity in industrial applications such as electric vehicles, robotic systems, and offshore industries due to their merits of efficiency, power density, and controllability. PMSMs working in such applications are constantly exposed to electrical, thermal, and mechanical stresses, resulting in different faults such as electrical, mechanical, and magnetic faults. These faults may lead to efficiency reduction, excessive heat, and even catastrophic system breakdown if not diagnosed in time. Therefore, developing methods for real-time condition monitoring and detection of faults at early stages can substantially lower maintenance costs, downtime of the system, and productivity loss. In this dissertation, condition monitoring and detection of the three most common faults in PMSMs and drive systems, namely inter-turn short circuit, demagnetization, and sensor faults are studied. First, modeling and detection of inter-turn short circuit fault is investigated by proposing one FEM-based model, and one analytical model. In these two models, efforts are made to extract either fault indicators or adjustments for being used in combination with more complex detection methods. Subsequently, a systematic fault diagnosis of PMSM and drive system containing multiple faults based on structural analysis is presented. After implementing structural analysis and obtaining the redundant part of the PMSM and drive system, several sequential residuals are designed and implemented based on the fault terms that appear in each of the redundant sets to detect and isolate the studied faults which are applied at different time intervals. Finally, real-time detection of faults in PMSMs and drive systems by using a powerful statistical signal-processing detector such as generalized likelihood ratio test is investigated. By using generalized likelihood ratio test, a threshold was obtained based on choosing the probability of a false alarm and the probability of detection for each detector based on which decision was made to indicate the presence of the studied faults. To improve the detection and recovery delay time, a recursive cumulative GLRT with an adaptive threshold algorithm is implemented. As a result, a more processed fault indicator is achieved by this recursive algorithm that is compared to an arbitrary threshold, and a decision is made in real-time performance. The experimental results show that the statistical detector is able to efficiently detect all the unexpected faults in the presence of unknown noise and without experiencing any false alarm, proving the effectiveness of this diagnostic approach.publishedVersio

    Stator inter-turn faults diagnosis in induction motors using zero-sequence signal injection

    Get PDF
    This study presents a strategy for stator inter-turn faults diagnosis in induction motors (IMs) operating under timevariable load and time-variable speed conditions. The strategy consists in injecting a zero-sequence high-frequency signal in order to analyse variations in the stator inductances. Incipient stator inter-turn faults are detected by a simple signal processing of the derivatives of the currents. A feature of the strategy is that the zero-sequence high-frequency signal is generated by the inverter that feeds the machine, without modifying the standard space vector modulation of the IM-drive. Experimental results show that faults representing <1% of the stator winding can be detected, as well as the phase location of the fault, validating this proposal.Fil: Otero, Marcial. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: de la Barrera, Pablo Martin. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Bossio, Guillermo Rubén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Leidhold, Roberto. Otto-von-Guericke-Universität Magdeburg; Alemani

    Advanced Fault Detection Methods for Permanent Magnets Synchronous Machines

    Get PDF
    The trend in recent years of transport electrification has significantly increased the demand for reliability and availability of electric drives, particularly in those employing Permanent Magnet Synchronous Machines (PMSM), often selected due to their high efficiency and energy density. Fault detection has been identified as one of the key aspects to cover such demand. Stator winding faults are known to be the second most common type of fault, after bearing fault. An extensive literature review has shown that, although a number of methods has been proposed to address this type of fault, no tool of general application, capable of dealing effectively with fault detection under transient conditions unrelated to the fault, has been proposed up to date. This thesis has made contributions to modelling, real-time emulation and stator winding fault detection of PMSM. Fault detection has been carried out through model-based and signal-based methods with a specific aim at operation during transient conditions. Furthermore, fault classification methods already available have been implemented with features computed by proposed signal-based fault detection methods. The main conclusion drawn from this thesis is that model-based fault detection methods, particularly those based on residuals, appear to be better suited for transient conditions analysis, as opposed to signal-based fault detection methods. However, it is expected that a combination of the two (model/signal) would yield the best results

    Online parameter estimation for permanent magnet synchronous machines : an overview

    Get PDF
    Online parameter estimation of permanent magnet synchronous machines is critical for improving their control performance and operational reliability. This paper provides an overview of the recent achievements of online parameter estimation of PMSMs with examples. The critical issues in parameter estimation are firstly analysed, especially the rank-deficient issue and inverter nonlinearities. Then, the state-of-the-art online parameter estimation modelling techniques are reviewed and assessed. Finally, some typical applications and examples are outlined, e.g. estimation of mechanical parameters, improvement of sensored and sensorless control performance, thermal condition monitoring, and fault diagnosis, together with future research trends

    NOVEL METHODS FOR PERMANENT MAGNET DEMAGNETIZATION DETECTION IN PERMANENT MAGNET SYNCHRONOUS MACHINES

    Get PDF
    Monitoring and detecting PM flux linkage is important to maintain a stable permanent magnet synchronous motor (PMSM) operation. The key problems that need to be solved at this stage are to: 1) establish a demagnetization magnetic flux model that takes into account the influence of various nonlinear and complex factors to reveal the demagnetization mechanism; 2) explore the relationship between different factors and demagnetizing magnetic field, to detect the demagnetization in the early stage; and 3) propose post-demagnetization measures. This thesis investigates permanent magnet (PM) demagnetization detection for PMSM machines to achieve high-performance and reliable machine drive for practical industrial and consumer applications. In this thesis, theoretical analysis, numerical calculation as well as experimental investigations are carried out to systematically study the demagnetization detection mechanism and post-demagnetization measures for permanent magnet synchronous motors. At first a flux based acoustic noise model is proposed to analyze online PM demagnetization detection by using a back propagation neural network (BPNN) with acoustic noise data. In this method, the PM demagnetization is detected by means of comparing the measured acoustic signal of PMSM with an acoustic signal library of seven acoustical indicators. Then torque ripple is chosen for online PM demagnetization diagnosis by using continuous wavelet transforms (CWT) and Grey System Theory (GST). This model is able to reveal the relationship between torque variation and PM electromagnetic interferences. After demagnetization being detected, a current regulation strategy is proposed to minimize the torque ripples induced by PM demagnetization. Next, in order to compare the demagnetization detection accuracy, different data mining techniques, Vold-Kalman filtering order tracking (VKF-OT) and dynamic Bayesian network (DBN) based detection approach is applied to real-time PM flux monitoring through torque ripple again. VKF-OT is introduced to track the order of torque ripple of PMSM running in transient state. Lastly, the combination of acoustic noise and torque is investigated for demagnetization detection by using multi-sensor information fusion to improve the system redundancy and accuracy. Bayesian network based multi-sensor information fusion is then proposed to detect the demagnetization ratio from the extracted features. During the analysis of demagnetization detection methods, the proposed PM detection approaches both form torque ripple and acoustic noise are extensively evaluated on a laboratory PM machine drive system under different speeds, load conditions, and temperatures

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    Modelling, Fault Detection and Control of Fault Tolerant Permanent Magnet Machine Drives

    Get PDF

    Field weakening and sensorless control solutions for synchronous machines applied to electric vehicles.

    Get PDF
    184 p.La polución es uno de los mayores problemas en los países industrializados. Por ello, la electrificación del transporte por carretera está en pleno auge, favoreciendo la investigación y el desarrollo industrial. El desarrollo de sistemas de propulsión eficientes, fiables, compactos y económicos juega un papel fundamental para la introducción del vehículo eléctrico en el mercado.Las máquinas síncronas de imanes permanentes son, a día de hoy la tecnología más empleada en vehículos eléctricos e híbridos por sus características. Sin embargo, al depender del uso de tierras raras, se están investigando alternativas a este tipo de máquina, tales como las máquinas de reluctancia síncrona asistidas por imanes. Para este tipo de máquinas síncronas es necesario desarrollar estrategias de control eficientes y robustas. Las desviaciones de parámetros son comunes en estas máquinas debido a la saturación magnética y a otra serie de factores, tales como tolerancias de fabricación, dependencias en función de la temperatura de operación o envejecimiento. Las técnicas de control convencionales, especialmente las estrategias de debilitamiento de campo dependen, en general, del conocimiento previo de dichos parámetros. Si no son lo suficientemente robustos, pueden producir problemas de control en las regiones de debilitamiento de campo y debilitamiento de campo profundo. En este sentido, esta tesis presenta dos nuevas estrategias de control de debilitamiento de campo híbridas basadas en LUTs y reguladores VCT.Por otro lado, otro requisito indispensable para la industria de la automoción es la detección de faltas y la tolerancia a fallos. En este sentido, se presenta una nueva estrategia de control sensorless basada en una estructura PLL/HFI híbrida que permite al vehículo continuar operando de forma pseudo-óptima ante roturas en el sensor de posición y velocidad de la máquina eléctrica. En esta tesis, ambas propuestas se validan experimentalmente en un sistema de propulsión real para vehículo eléctrico que cuenta con una máquina de reluctancia síncrona asistidas por imanes de 51 kW
    corecore