84 research outputs found

    Intersection schemas as a dataspace integration technique

    Get PDF
    This paper introduces the concept of Intersection Schemas in the field of heterogeneous data integration and dataspaces. We introduce a technique for incrementally integrating heterogeneous data sources by specifying semantic overlaps between sets of extensional schemas using bidirectional schema transformations, and automatically combining them into a global schema at each iteration of the integration process. We propose an incremental data integration methodology that uses this technique and that aims to reduce the amount of up-front effort required. Such approaches to data integration are often described as pay-as-you-go. A demonstrator of our technique is described, which utilizes a new graphical user tool implemented using the AutoMed heterogeneous data integration system. A case study is also described, and our technique and integration methodology are compared with a classical data integration strategy

    A Survey of the State of Dataspaces

    Get PDF
    Published in International Journal of Computer and Information Technology.This paper presents a survey of the state of dataspaces. With dataspaces becoming the modern technique of systems integration, the achievement of complete dataspace development is a critical issue. This has led to the design and implementation of dataspace systems using various approaches. Dataspaces are data integration approaches that target for data coexistence in the spatial domain. Unlike traditional data integration techniques, they do not require up front semantic integration of data. In this paper, we outline and compare the properties and implementations of dataspaces including the approaches of optimizing dataspace development. We finally present actual dataspace development recommendations to provide a global overview of this significant research topic.This paper presents a survey of the state of dataspaces . With dataspaces becoming the modern technique of systems integration, the ach ievement of complete dataspace development is a critical issue. This has led to the design and implementation of dataspace systems using various approaches. Dataspaces are data integration approaches that target for data coexistence in the spatial domain. Unlike traditional data integration techniques, they do not require up front semantic integration of data. In this paper, we outline and compare the properties and implementations of dataspaces including the approaches of optimizing dataspace development. We finally present actual dataspace development recommendations to provide a global overview of this significant research topic

    LinkedScales : bases de dados em multiescala

    Get PDF
    Orientador: André SantanchèTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: As ciências biológicas e médicas precisam cada vez mais de abordagens unificadas para a análise de dados, permitindo a exploração da rede de relacionamentos e interações entre elementos. No entanto, dados essenciais estão frequentemente espalhados por um conjunto cada vez maior de fontes com múltiplos níveis de heterogeneidade entre si, tornando a integração cada vez mais complexa. Abordagens de integração existentes geralmente adotam estratégias especializadas e custosas, exigindo a produção de soluções monolíticas para lidar com formatos e esquemas específicos. Para resolver questões de complexidade, essas abordagens adotam soluções pontuais que combinam ferramentas e algoritmos, exigindo adaptações manuais. Abordagens não sistemáticas dificultam a reutilização de tarefas comuns e resultados intermediários, mesmo que esses possam ser úteis em análises futuras. Além disso, é difícil o rastreamento de transformações e demais informações de proveniência, que costumam ser negligenciadas. Este trabalho propõe LinkedScales, um dataspace baseado em múltiplos níveis, projetado para suportar a construção progressiva de visões unificadas de fontes heterogêneas. LinkedScales sistematiza as múltiplas etapas de integração em escalas, partindo de representações brutas (escalas mais baixas), indo gradualmente para estruturas semelhantes a ontologias (escalas mais altas). LinkedScales define um modelo de dados e um processo de integração sistemático e sob demanda, através de transformações em um banco de dados de grafos. Resultados intermediários são encapsulados em escalas reutilizáveis e transformações entre escalas são rastreadas em um grafo de proveniência ortogonal, que conecta objetos entre escalas. Posteriormente, consultas ao dataspace podem considerar objetos nas escalas e o grafo de proveniência ortogonal. Aplicações práticas de LinkedScales são tratadas através de dois estudos de caso, um no domínio da biologia -- abordando um cenário de análise centrada em organismos -- e outro no domínio médico -- com foco em dados de medicina baseada em evidênciasAbstract: Biological and medical sciences increasingly need a unified, network-driven approach for exploring relationships and interactions among data elements. Nevertheless, essential data is frequently scattered across sources with multiple levels of heterogeneity. Existing data integration approaches usually adopt specialized, heavyweight strategies, requiring a costly upfront effort to produce monolithic solutions for handling specific formats and schemas. Furthermore, such ad-hoc strategies hamper the reuse of intermediary integration tasks and outcomes. This work proposes LinkedScales, a multiscale-based dataspace designed to support the progressive construction of a unified view of heterogeneous sources. It departs from raw representations (lower scales) and goes towards ontology-like structures (higher scales). LinkedScales defines a data model and a systematic, gradual integration process via operations over a graph database. Intermediary outcomes are encapsulated as reusable scales, tracking the provenance of inter-scale operations. Later, queries can combine both scale data and orthogonal provenance information. Practical applications of LinkedScales are discussed through two case studies on the biology domain -- addressing an organism-centric analysis scenario -- and the medical domain -- focusing on evidence-based medicine dataDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação141353/2015-5CAPESCNP

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Semantic Data Management in Data Lakes

    Full text link
    In recent years, data lakes emerged as away to manage large amounts of heterogeneous data for modern data analytics. One way to prevent data lakes from turning into inoperable data swamps is semantic data management. Some approaches propose the linkage of metadata to knowledge graphs based on the Linked Data principles to provide more meaning and semantics to the data in the lake. Such a semantic layer may be utilized not only for data management but also to tackle the problem of data integration from heterogeneous sources, in order to make data access more expressive and interoperable. In this survey, we review recent approaches with a specific focus on the application within data lake systems and scalability to Big Data. We classify the approaches into (i) basic semantic data management, (ii) semantic modeling approaches for enriching metadata in data lakes, and (iii) methods for ontologybased data access. In each category, we cover the main techniques and their background, and compare latest research. Finally, we point out challenges for future work in this research area, which needs a closer integration of Big Data and Semantic Web technologies

    A framework for information integration using ontological foundations

    Get PDF
    With the increasing amount of data, ability to integrate information has always been a competitive advantage in information management. Semantic heterogeneity reconciliation is an important challenge of many information interoperability applications such as data exchange and data integration. In spite of a large amount of research in this area, the lack of theoretical foundations behind semantic heterogeneity reconciliation techniques has resulted in many ad-hoc approaches. In this thesis, I address this issue by providing ontological foundations for semantic heterogeneity reconciliation in information integration. In particular, I investigate fundamental semantic relations between properties from an ontological point of view and show how one of the basic and natural relations between properties – inferring implicit properties from existing properties – can be used to enhance information integration. These ontological foundations have been exploited in four aspects of information integration. First, I propose novel algorithms for semantic enrichment of schema mappings. Second, using correspondences between similar properties at different levels of abstraction, I propose a configurable data integration system, in which query rewriting techniques allows the tradeoff between accuracy and completeness in query answering. Third, to keep the semantics in data exchange, I propose an entity preserving data exchange approach that reflects source entities in the target independent of classification of entities. Finally, to improve the efficiency of the data exchange approach proposed in this thesis, I propose an extended model of the column-store model called sliced column store. Working prototypes of the techniques proposed in this thesis are implemented to show the feasibility of realizing these techniques. Experiments that have been performed using various datasets show the techniques proposed in this thesis outperform many existing techniques in terms of ability to handle semantic heterogeneities and performance of information exchange

    Lightweight information integration through partial mapping and query reformulation

    Get PDF
    [no abstract
    corecore