6,338 research outputs found

    Intersection Graphs in Simultaneous Embedding with Fixed Edges

    Get PDF
    We examine the simultaneous embedding with fixed edges problem for two planar graphs G1 and G2 with the focus on their in- tersection S := G1 ∩ G2 . In particular, we will present the complete set of intersection graphs S that guarantee a simultaneous embedding with fixed edges for (G1 , G2 ). More formally, we define the subset ISEFE of all planar graphs as follows: A graph S lies in ISEFE if every pair of pla- nar graphs (G1 , G2 ) with intersection S = G1 ∩ G2 has a simultaneous embedding with fixed edges. We will characterize this set by a detailed study of topological embeddings and finally give a complete list of graphs in this set as our main result of this paper

    Intersection Graphs in Simultaneous Embedding with Fixed Edges

    Get PDF
    We examine the simultaneous embedding with ?xed edges problem for two planar graphs G1 and G2 with the focus on their in- tersection S := G1 ? G2 . In particular, we will present the complete set of intersection graphs S that guarantee a simultaneous embedding with ?xed edges for (G1 , G2 ). More formally, we de?ne the subset ISEFE of all planar graphs as follows: A graph S lies in ISEFE if every pair of pla- nar graphs (G1 , G2 ) with intersection S = G1 ? G2 has a simultaneous embedding with ?xed edges. We will characterize this set by a detailed study of topological embeddings and ?nally give a complete list of graphs in this set as our main result of this paper

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    Simultaneous Graph Representation Problems

    Get PDF
    Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous representation problem for several graph classes. For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs or belongs to exactly one of them. Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes. For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs. We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1
    corecore