2,516 research outputs found

    The Erd\H{o}s-Ko-Rado theorem for twisted Grassmann graphs

    Full text link
    We present a "modern" approach to the Erd\H{o}s-Ko-Rado theorem for Q-polynomial distance-regular graphs and apply it to the twisted Grassmann graphs discovered in 2005 by van Dam and Koolen.Comment: 5 page

    A new near octagon and the Suzuki tower

    Get PDF
    We construct and study a new near octagon of order (2,10)(2,10) which has its full automorphism group isomorphic to the group G2(4):2\mathrm{G}_2(4){:}2 and which contains 416416 copies of the Hall-Janko near octagon as full subgeometries. Using this near octagon and its substructures we give geometric constructions of the G2(4)\mathrm{G}_2(4)-graph and the Suzuki graph, both of which are strongly regular graphs contained in the Suzuki tower. As a subgeometry of this octagon we have discovered another new near octagon, whose order is (2,4)(2,4).Comment: 24 pages, revised version with added remarks and reference

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists x∈Sx\in S such that the distances d(u,x)≠d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    Measuring and Understanding Throughput of Network Topologies

    Full text link
    High throughput is of particular interest in data center and HPC networks. Although myriad network topologies have been proposed, a broad head-to-head comparison across topologies and across traffic patterns is absent, and the right way to compare worst-case throughput performance is a subtle problem. In this paper, we develop a framework to benchmark the throughput of network topologies, using a two-pronged approach. First, we study performance on a variety of synthetic and experimentally-measured traffic matrices (TMs). Second, we show how to measure worst-case throughput by generating a near-worst-case TM for any given topology. We apply the framework to study the performance of these TMs in a wide range of network topologies, revealing insights into the performance of topologies with scaling, robustness of performance across TMs, and the effect of scattered workload placement. Our evaluation code is freely available
    • …
    corecore