1,189 research outputs found

    The Complexity of Finding Small Triangulations of Convex 3-Polytopes

    Full text link
    The problem of finding a triangulation of a convex three-dimensional polytope with few tetrahedra is proved to be NP-hard. We discuss other related complexity results.Comment: 37 pages. An earlier version containing the sketch of the proof appeared at the proceedings of SODA 200

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure

    Existence and uniqueness theorem for convex polyhedral metrics on compact surfaces

    Full text link
    We state that any constant curvature Riemannian metric with conical singularities of constant sign curvature on a compact (orientable) surface SS can be realized as a convex polyhedron in a Riemannian or Lorentzian) space-form. Moreover such a polyhedron is unique, up to global isometries, among convex polyhedra invariant under isometries acting on a totally umbilical surface. This general statement falls apart into 10 different cases. The cases when SS is the sphere are classical.Comment: Survey paper. No proof. 10 page

    Flipping Cubical Meshes

    Full text link
    We define and examine flip operations for quadrilateral and hexahedral meshes, similar to the flipping transformations previously used in triangular and tetrahedral mesh generation.Comment: 20 pages, 24 figures. Expanded journal version of paper from 10th International Meshing Roundtable. This version removes some unwanted paragraph breaks from the previous version; the text is unchange

    Positive Geometries and Differential Forms with Non-Logarithmic Singularities I

    Get PDF
    Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.Comment: 47 pages, figures in Tik

    Overlapping Unit Cells in 3d Quasicrystal Structure

    Full text link
    A 3-dimensional quasiperiodic lattice, with overlapping unit cells and periodic in one direction, is constructed using grid and projection methods pioneered by de Bruijn. Each unit cell consists of 26 points, of which 22 are the vertices of a convex polytope P, and 4 are interior points also shared with other neighboring unit cells. Using Kronecker's theorem the frequencies of all possible types of overlapping are found.Comment: LaTeX2e, 11 pages, 5 figures (8 eps files), uses iopart.class. Final versio
    corecore