44 research outputs found

    Sensing and indicating interruptibility in office workplaces

    Full text link
    In office workplaces, interruptions by co-workers, emails or instant messages are common. Many of these interruptions are useful as they might help resolve questions quickly and increase the productivity of the team. However, knowledge workers interrupted at inopportune moments experience longer task resumption times, lower overall performance, more negative emotions, and make more errors than if they were to be interrupted at more appropriate moments. To reduce the cost of interruptions, several approaches have been suggested, ranging from simply closing office doors to automatically measuring and indicating a knowledge worker’s interruptibility - the availability for interruptions - to co-workers. When it comes to computer-based interruptions, such as emails and instant messages, several studies have shown that they can be deferred to automatically detected breakpoints during task execution, which reduces their interruption cost. For in-person interruptions, one of the most disruptive and time-consuming types of interruptions in office workplaces, the predominant approaches are still manual strategies to physically indicate interruptibility, such as wearing headphones or using manual busy lights. However, manual approaches are cumbersome to maintain and thus are not updated regularly, which reduces their usefulness. To automate the measurement and indication of interruptibility, researchers have looked at a variety of data that can be leveraged, ranging from contextual data, such as audio and video streams, keyboard and mouse interaction data, or task characteristics all the way to biometric data, such as heart rate data or eye traces. While studies have shown promise for the use of such sensors, they were predominantly conducted on small and controlled tasks over short periods of time and mostly limited to either contextual or biometric sensors. Little is known about their accuracy and applicability for long-term usage in the field, in particular in office workplaces. In this work, we developed an approach to automatically measure interruptibility in office workplaces, using computer interaction sensors, which is one type of contextual sensors, and biometric sensors. In particular, we conducted one lab and two field studies with a total of 33 software developers. Using the collected computer interaction and biometric data, we used machine learning to train interruptibility models. Overall, the results of our studies show that we can automatically predict interruptibility with high accuracy of 75.3%, improving on a baseline majority classifier by 26.6%. An automatic measure of interruptibility can consequently be used to indicate the status to others, allowing them to make a well-informed decision on when to interrupt. While there are some automatic approaches to indicate interruptibility on a computer in the form of contact list applications, they do not help to reduce in-person interruptions. Only very few researchers combined the benefits of an automatic measurement with a physical indicator, but their effect in office workplaces over longer periods of time is unknown. In our research, we developed the FlowLight, an automatic interruptibility indicator in the form of a traffic-light like LED placed on a knowledge worker's desk. We evaluated the FlowLight in a large-scale field study with 449 participants from 12 countries. The evaluation revealed that after the introduction of the FlowLight, the number of in-person interruptions decreased by 46% (based on 36 interruption logs), the awareness on the potential harm of interruptions was elevated and participants felt more productive (based on 183 survey responses and 23 interview transcripts), and 86% remained active users even after the two-month study period ended (based on 449 online usage logs). Overall, our research shows that we can successfully reduce in-person interruption cost in office workplaces by sensing and indicating interruptibility. In addition, our research can be extended and opens up new opportunities to further support interruption management, for example, by the integration of other more accurate biometric sensors to improve the interruptibility model, or the use of the model to reduce self-interruptions

    Brainatwork: Logging Cognitive Engagement and Tasks in the Workplace Using Electroencephalography

    Get PDF
    Today's workplaces are dynamic and complex. Digital data sources such as email and video conferencing aim to support workers but also add to their burden of multitasking. Psychophysiological sensors such as Electroencephalography (EEG) can provide users with cues about their cognitive state. We introduce BrainAtWork, a workplace engagement and task logger which shows users their cognitive state while working on different tasks. In a lab study with eleven participants working on their own real-world tasks, we gathered 16 hours of EEG and PC logs which were labeled into three classes: central, peripheral and meta work. We evaluated the usability of BrainAtWork via questionnaires and interviews. We investigated the correlations between measured cognitive engagement from EEG and subjective responses from experience sampling probes. Using random forests classification, we show the feasibility of automatically labeling work tasks into work classes. We discuss how BrainAtWork can support workers on the long term through encouraging reflection and helping in task scheduling

    Tools to Improve Interruption Management

    Get PDF
    Interruptions carry a high cost, especially to software developers. To prevent unnecessary interruptions, several technologies are being explored that can help manage the timing of interruptions, such as displaying the interruptibility of a worker to their peers. Relatively simple algorithms utilizing computer interaction data have been created and used successfully in the workplace, while technology using bio-metric emotion recognition to detect the interruptibility of a user is also being developed

    A Replication Study on Code Comprehension and Expertise using Lightweight Biometric Sensors

    Full text link
    Code comprehension has been recently investigated from physiological and cognitive perspectives through the use of medical imaging. Floyd et al (i.e., the original study) used fMRI to classify the type of comprehension tasks performed by developers and relate such results to their expertise. We replicate the original study using lightweight biometrics sensors which participants (28 undergrads in computer science) wore when performing comprehension tasks on source code and natural language prose. We developed machine learning models to automatically identify what kind of tasks developers are working on leveraging their brain-, heart-, and skin-related signals. The best improvement over the original study performance is achieved using solely the heart signal obtained through a single device (BAC 87% vs. 79.1%). Differently from the original study, we were not able to observe a correlation between the participants' expertise and the classifier performance (tau = 0.16, p = 0.31). Our findings show that lightweight biometric sensors can be used to accurately recognize comprehension tasks opening interesting scenarios for research and practice.Comment: Author version submitted to ICPC2019 (Replication track
    corecore