326 research outputs found

    Structural Analysis: Shape Information via Points-To Computation

    Full text link
    This paper introduces a new hybrid memory analysis, Structural Analysis, which combines an expressive shape analysis style abstract domain with efficient and simple points-to style transfer functions. Using data from empirical studies on the runtime heap structures and the programmatic idioms used in modern object-oriented languages we construct a heap analysis with the following characteristics: (1) it can express a rich set of structural, shape, and sharing properties which are not provided by a classic points-to analysis and that are useful for optimization and error detection applications (2) it uses efficient, weakly-updating, set-based transfer functions which enable the analysis to be more robust and scalable than a shape analysis and (3) it can be used as the basis for a scalable interprocedural analysis that produces precise results in practice. The analysis has been implemented for .Net bytecode and using this implementation we evaluate both the runtime cost and the precision of the results on a number of well known benchmarks and real world programs. Our experimental evaluations show that the domain defined in this paper is capable of precisely expressing the majority of the connectivity, shape, and sharing properties that occur in practice and, despite the use of weak updates, the static analysis is able to precisely approximate the ideal results. The analysis is capable of analyzing large real-world programs (over 30K bytecodes) in less than 65 seconds and using less than 130MB of memory. In summary this work presents a new type of memory analysis that advances the state of the art with respect to expressive power, precision, and scalability and represents a new area of study on the relationships between and combination of concepts from shape and points-to analyses

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Heap Reference Analysis Using Access Graphs

    Full text link
    Despite significant progress in the theory and practice of program analysis, analysing properties of heap data has not reached the same level of maturity as the analysis of static and stack data. The spatial and temporal structure of stack and static data is well understood while that of heap data seems arbitrary and is unbounded. We devise bounded representations which summarize properties of the heap data. This summarization is based on the structure of the program which manipulates the heap. The resulting summary representations are certain kinds of graphs called access graphs. The boundedness of these representations and the monotonicity of the operations to manipulate them make it possible to compute them through data flow analysis. An important application which benefits from heap reference analysis is garbage collection, where currently liveness is conservatively approximated by reachability from program variables. As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which has been confirmed by several empirical studies. We propose the first ever end-to-end static analysis to distinguish live objects from reachable objects. We use this information to make dead objects unreachable by modifying the program. This application is interesting because it requires discovering data flow information representing complex semantics. In particular, we discover four properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all combinations of directions of analysis (i.e. forward and backward) and confluence of information (i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++ languages.Comment: Accepted for printing by ACM TOPLAS. This version incorporates referees' comment

    Precise Null Pointer Analysis Through Global Value Numbering

    Full text link
    Precise analysis of pointer information plays an important role in many static analysis techniques and tools today. The precision, however, must be balanced against the scalability of the analysis. This paper focusses on improving the precision of standard context and flow insensitive alias analysis algorithms at a low scalability cost. In particular, we present a semantics-preserving program transformation that drastically improves the precision of existing analyses when deciding if a pointer can alias NULL. Our program transformation is based on Global Value Numbering, a scheme inspired from compiler optimizations literature. It allows even a flow-insensitive analysis to make use of branch conditions such as checking if a pointer is NULL and gain precision. We perform experiments on real-world code to measure the overhead in performing the transformation and the improvement in the precision of the analysis. We show that the precision improves from 86.56% to 98.05%, while the overhead is insignificant.Comment: 17 pages, 1 section in Appendi

    A combined representation for the maintenance of C programs

    Get PDF
    A programmer wishing to make a change to a piece of code must first gain a full understanding of the behaviours and functionality involved. This process of program comprehension is difficult and time consuming, and often hindered by the absence of useful program documentation. Where documentation is absent, static analysis techniques are often employed to gather programming level information in the form of data and control flow relationships, directly from the source code itself. Software maintenance environments are created by grouping together a number of different static analysis tools such as program sheers, call graph builders and data flow analysis tools, providing a maintainer with a selection of 'views' of the subject code. However, each analysis tool often requires its own intermediate program representation (IPR). For example, an environment comprising five tools may require five different IPRs, giving repetition of information and inefficient use of storage space. A solution to this problem is to develop a single combined representation which contains all the program relationships required to present a maintainer with each required code view. The research presented in this thesis describes the Combined C Graph (CCG), a dependence-based representation for C programs from which a maintainer is able to construct data and control dependence views, interprocedural control flow views, program slices and ripple analyses. The CCG extends earlier dependence-based program representations, introducing language features such as expressions with embedded side effects and control flows, value returning functions, pointer variables, pointer parameters, array variables and structure variables. Algorithms for the construction of the CCG are described and the feasibility of the CCG demonstrated by means of a C/Prolog based prototype implementation

    A survey of program slicing techniques

    Get PDF
    • …
    corecore