1,261 research outputs found

    Interpreting quantum discord through quantum state merging

    Full text link
    We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single copy scenario.Comment: 5 pages, no figures. See http://arxiv.org/abs/1008.3205 for similar results. Typos fixed, references and acknowledgements updated. End note adde

    Nonzero Classical Discord

    Get PDF
    Quantum discord is the quantitative difference between two alternative expressions for bipartite mutual information, given respectively in terms of two distinct definitions for the conditional entropy. By constructing a stochastic model of shared states, classical discord can be similarly defined, quantifying the presence of some stochasticity in the measurement process. Therefore, discord can generally be understood as a quantification of the system's state disturbance due to local measurements, be it quantum or classical. We establish an operational meaning of classical discord in the context of state merging with noisy measurement and thereby show the quantum-classical separation in terms of a negative conditional entropy.Comment: Replaced by the published versio

    Computing quantum discord is NP-complete

    Full text link
    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.Comment: The (published) journal version http://iopscience.iop.org/1367-2630/16/3/033027/article is more updated than the arXiv versions, and is accompanied with a general scientific summary for non-specialists in computational complexit

    On the Necessity of Entanglement for the Explanation of Quantum Speedup

    Get PDF
    In this paper I argue that entanglement is a necessary component for any explanation of quantum speedup and I address some purported counter-examples that some claim show that the contrary is true. In particular, I address Biham et al.'s mixed-state version of the Deutsch-Jozsa algorithm, and Knill & Laflamme's deterministic quantum computation with one qubit (DQC1) model of quantum computation. I argue that these examples do not demonstrate that entanglement is unnecessary for the explanation of quantum speedup, but that they rather illuminate and clarify the role that entanglement does play.Comment: Many clarificatory changes, and improved argumentation. Comments and criticisms are still welcom

    Quantum mutual information and quantumness vectors for multi-qubit systems

    Full text link
    We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number of different possible generalizations. We consider two of them. One of them is related to the notion of quantum discord and the other to the concept of quantum dissension. This new measure, called dissension vector, is a set of numbers -- quantumness vector. This can be thought of as a fine-grained measure, as opposed to measures that quantify some average quantum properties of a system. These quantities quantify/characterize the correlations present in multiparticle states. We consider some multiqubit states and find that these quantities are responsive to different aspects of quantumness, and correlations present in a state. We find that different dissension vectors can track the correlations (both classical and quantum), or quantumness only. As physical applications, we find that these vectors might be useful in several information processing tasks. We consider the role of dissension vectors -- (a) in deciding the security of BB84 protocol against an eavesdropper and (b) in determining the possible role of correlations in the performance of Grover search algorithm. Especially, in the Grover search algorithm, we find that dissension vectors can detect the correlations and show the maximum correlations when one expects.Comment: 18 pages 8 figures. Updated. Comments are welcom

    Remote transfer of Gaussian quantum discord

    Full text link
    Quantum discord quantifies quantum correlation between quantum systems, which has potential application in quantum information processing. In this paper, we propose a scheme realizing the remote transfer of Gaussian quantum discord, in which another quantum discordant state or an Einstein-Podolsky-Rosen entangled state serves as ancillary state. The calculation shows that two independent optical modes that without direct interaction become quantum correlated after the transfer. The output Gaussian quantum discord can be higher than the initial Gaussian quantum discord when optimal gain of the classical channel and the ancillary state are chosen. The physical reason for this result comes from the fact that the quantum discord of an asymmetric Gaussian quantum discordant state can be higher than that of a symmetric one. The presented scheme has potential application in quantum information network

    Geometric measure of quantum discord and the geometry of a class of two-qubit states

    Full text link
    We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord (GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of entanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.Comment: 10 pages, 4 figures, comments are welcom
    • ā€¦
    corecore