903 research outputs found

    Interpreting Metabolomic Profiles using Unbiased Pathway Models

    Get PDF
    Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT) in 50 individuals, 25 with normal (NGT) and 25 with impaired glucose tolerance (IGT). Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for “active modules”—regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved disease classification via the interrogation of specific transporter activities

    Computational Methods to Interpret and Integrate Metabolomic Data

    Get PDF

    Serum metabolomic profiling in acute alcoholic hepatitis identifies multiple dysregulated pathways

    Get PDF
    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH.This study was funded by Grant 5K08AA017622 from the National Institutes of Health and a University of Pittsburgh Medical Center Pilot Grant to JB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Metabolic Modulation Predicts Heart Failure Tests Performance

    Get PDF
    The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction \u3c 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors’ coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio

    Diagnostic metabolomic profiling of Parkinson\u27s disease biospecimens

    Get PDF
    BACKGROUND: Reliable and sensitive biomarkers are needed for enhancing and predicting Parkinson\u27s disease (PD) diagnosis. OBJECTIVE: To investigate comprehensive metabolomic profiling of biochemicals in CSF and serum for determining diagnostic biomarkers of PD. METHODS: Fifty subjects, symptomatic with PD for ≄5 years, were matched to 50 healthy controls (HCs). We used ultrahigh-performance liquid chromatography linked to tandem mass spectrometry (UHPLC-MS/MS) for measuring relative concentrations of ≀1.5 kDalton biochemicals. A reference library created from authentic standards facilitated chemical identifications. Analytes underwent univariate analysis for PD association, with false discovery rate-adjusted p-value (≀0.05) determinations. Multivariate analysis (for identifying a panel of biochemicals discriminating PD from HCs) used several biostatistical methods, including logistic LASSO regression. RESULTS: Comparing PD and HCs, strong differentiation was achieved from CSF but not serum specimens. With univariate analysis, 21 CSF compounds exhibited significant differential concentrations. Logistic LASSO regression led to selection of 23 biochemicals (11 shared with those determined by the univariate analysis). The selected compounds, as a group, distinguished PD from HCs, with Area-Under-the-Receiver-Operating-Characteristic (ROC) curve of 0.897. With optimal cutoff, logistic LASSO achieved 100% sensitivity and 96% specificity (and positive and negative predictive values of 96% and 100%). Ten-fold cross-validation gave 84% sensitivity and 82% specificity (and 82% positive and 84% negative predictive values). From the logistic LASSO-chosen regression model, 2 polyamine metabolites (N-acetylcadaverine and N-acetylputrescine) were chosen and had the highest fold-changes in comparing PD to HCs. Another chosen biochemical, acisoga (N-(3-acetamidopropyl)pyrrolidine-2-one), also is a polyamine metabolism derivative. CONCLUSIONS: UHPLC-MS/MS assays provided a metabolomic signature highly predictive of PD. These findings provide further evidence for involvement of polyamine pathways in the neurodegeneration of PD

    Connecting extracellular metabolomic measurements to intracellular flux states in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolomics has emerged as a powerful tool in the quantitative identification of physiological and disease-induced biological states. Extracellular metabolome or metabolic profiling data, in particular, can provide an insightful view of intracellular physiological states in a noninvasive manner.</p> <p>Results</p> <p>We used an updated genome-scale metabolic network model of Saccharomyces cerevisiae, <it>i</it>MM904, to investigate how changes in the extracellular metabolome can be used to study systemic changes in intracellular metabolic states. The <it>i</it>MM904 metabolic network was reconstructed based on an existing genome-scale network, <it>i</it>ND750, and includes 904 genes and 1,412 reactions. The network model was first validated by comparing 2,888 in silico single-gene deletion strain growth phenotype predictions to published experimental data. Extracellular metabolome data measured in response to environmental and genetic perturbations of ammonium assimilation pathways was then integrated with the <it>i</it>MM904 network in the form of relative overflow secretion constraints and a flux sampling approach was used to characterize candidate flux distributions allowed by these constraints. Predicted intracellular flux changes were consistent with published measurements on intracellular metabolite levels and fluxes. Patterns of predicted intracellular flux changes could also be used to correctly identify the regions of the metabolic network that were perturbed.</p> <p>Conclusion</p> <p>Our results indicate that integrating quantitative extracellular metabolomic profiles in a constraint-based framework enables inferring changes in intracellular metabolic flux states. Similar methods could potentially be applied towards analyzing biofluid metabolome variations related to human physiological and disease states.</p

    Translational Systems Pharmacology Studies in Pregnant Women

    Get PDF
    Pregnancy involves rapid physiological adaptation and complex interplay between mother and fetus. New analytic technologies provide large amounts of genomic, proteomic, and metabolomics data. The integration of these data through bioinformatics, statistical, and systems pharmacology techniques can improve our understanding of the mechanisms of normal maternal physiologic changes and fetal development. New insights into the mechanisms of pregnancy-related disorders, such as preterm birth (PTB), may lead to the development of new therapeutic interventions and novel biomarkers

    Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L., Kujawinski, E. B., Azua-Bustos, A., Lee, M. D., Marlow, J., Perl, S. M., & Cleaves, H. J. Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers. Astrobiology, (2020), doi:10.1089/ast.2019.2135.It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.This study was partially supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This work was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Hadean Bioscience,” grant number JP26106003, and also partially supported by Project “icyMARS,” funded by the European Research Council, ERC Starting Grant No. 307496. A.A-B thanks the contribution from the Project “MarsFirstWater,” funded by the European Research Council, ERC Consolidator Grant No. 818602 and the HFSP Project UVEnergy RGY0066/2018

    Metabolomics As an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers

    Get PDF
    It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome
    • 

    corecore