3,501 research outputs found

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    Mechanical MNIST: A benchmark dataset for mechanical metamodels

    Full text link
    Metamodels, or models of models, map defined model inputs to defined model outputs. Typically, metamodels are constructed by generating a dataset through sampling a direct model and training a machine learning algorithm to predict a limited number of model outputs from varying model inputs. When metamodels are constructed to be computationally cheap, they are an invaluable tool for applications ranging from topology optimization, to uncertainty quantification, to multi-scale simulation. By nature, a given metamodel will be tailored to a specific dataset. However, the most pragmatic metamodel type and structure will often be general to larger classes of problems. At present, the most pragmatic metamodel selection for dealing with mechanical data has not been thoroughly explored. Drawing inspiration from the benchmark datasets available to the computer vision research community, we introduce a benchmark data set (Mechanical MNIST) for constructing metamodels of heterogeneous material undergoing large deformation. We then show examples of how our benchmark dataset can be used, and establish baseline metamodel performance. Because our dataset is readily available, it will enable the direct quantitative comparison between different metamodeling approaches in a pragmatic manner. We anticipate that it will enable the broader community of researchers to develop improved metamodeling techniques for mechanical data that will surpass the baseline performance that we show here.Accepted manuscrip
    • …
    corecore