2,178 research outputs found

    Context-aware feature attribution through argumentation

    Full text link
    Feature attribution is a fundamental task in both machine learning and data analysis, which involves determining the contribution of individual features or variables to a model's output. This process helps identify the most important features for predicting an outcome. The history of feature attribution methods can be traced back to General Additive Models (GAMs), which extend linear regression models by incorporating non-linear relationships between dependent and independent variables. In recent years, gradient-based methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have limitations. GAMs tend to achieve lower accuracy, gradient-based methods can be difficult to interpret, and surrogate models often suffer from stability and fidelity issues. Furthermore, most existing methods do not consider users' contexts, which can significantly influence their preferences. To address these limitations and advance the current state-of-the-art, we define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction. Additionally, CA-FATA formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it inherently interpretable. CA-FATA also easily integrates side information, such as users' contexts, resulting in more accurate predictions

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Explainability in Music Recommender Systems

    Full text link
    The most common way to listen to recorded music nowadays is via streaming platforms which provide access to tens of millions of tracks. To assist users in effectively browsing these large catalogs, the integration of Music Recommender Systems (MRSs) has become essential. Current real-world MRSs are often quite complex and optimized for recommendation accuracy. They combine several building blocks based on collaborative filtering and content-based recommendation. This complexity can hinder the ability to explain recommendations to end users, which is particularly important for recommendations perceived as unexpected or inappropriate. While pure recommendation performance often correlates with user satisfaction, explainability has a positive impact on other factors such as trust and forgiveness, which are ultimately essential to maintain user loyalty. In this article, we discuss how explainability can be addressed in the context of MRSs. We provide perspectives on how explainability could improve music recommendation algorithms and enhance user experience. First, we review common dimensions and goals of recommenders' explainability and in general of eXplainable Artificial Intelligence (XAI), and elaborate on the extent to which these apply -- or need to be adapted -- to the specific characteristics of music consumption and recommendation. Then, we show how explainability components can be integrated within a MRS and in what form explanations can be provided. Since the evaluation of explanation quality is decoupled from pure accuracy-based evaluation criteria, we also discuss requirements and strategies for evaluating explanations of music recommendations. Finally, we describe the current challenges for introducing explainability within a large-scale industrial music recommender system and provide research perspectives.Comment: To appear in AI Magazine, Special Topic on Recommender Systems 202

    Impression-Aware Recommender Systems

    Full text link
    Novel data sources bring new opportunities to improve the quality of recommender systems. Impressions are a novel data source containing past recommendations (shown items) and traditional interactions. Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research. The relevance and interest of impressions have increased over the years; hence, the need for a review of relevant work on this type of recommenders. We present a systematic literature review on recommender systems using impressions, focusing on three fundamental angles in research: recommenders, datasets, and evaluation methodologies. We provide three categorizations of papers describing recommenders using impressions, present each reviewed paper in detail, describe datasets with impressions, and analyze the existing evaluation methodologies. Lastly, we present open questions and future directions of interest, highlighting aspects missing in the literature that can be addressed in future works.Comment: 34 pages, 103 references, 6 tables, 2 figures, ACM UNDER REVIE
    corecore