4,175 research outputs found

    Interpretations between ω-logic and second-order arithmetic

    Get PDF

    A functional interpretation for nonstandard arithmetic

    Get PDF
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Goedel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of extensional Heyting and Peano arithmetic in all finite types, strengthening earlier results by Moerdijk, Palmgren, Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the paper, we will point out some open problems and directions for future research and mention some initial results on saturation principles

    On Elementary Theories of Ordinal Notation Systems based on Reflection Principles

    Full text link
    We consider the constructive ordinal notation system for the ordinal ϵ0{\epsilon_0} that were introduced by L.D. Beklemishev. There are fragments of this system that are ordinal notation systems for the smaller ordinals ωn{\omega_n} (towers of ω{\omega}-exponentiations of the height nn). This systems are based on Japaridze's provability logic GLP\mathbf{GLP}. They are closely related with the technique of ordinal analysis of PA\mathbf{PA} and fragments of PA\mathbf{PA} based on iterated reflection principles. We consider this notation system and it's fragments as structures with the signatures selected in a natural way. We prove that the full notation system and it's fragments, for ordinals ≥ω4{\ge\omega_4}, have undecidable elementary theories. We also prove that the fragments of the full system, for ordinals ≤ω3{\le\omega_3}, have decidable elementary theories. We obtain some results about decidability of elementary theory, for the ordinal notation systems with weaker signatures.Comment: 23 page

    Linear Temporal Logic and Propositional Schemata, Back and Forth (extended version)

    Full text link
    This paper relates the well-known Linear Temporal Logic with the logic of propositional schemata introduced by the authors. We prove that LTL is equivalent to a class of schemata in the sense that polynomial-time reductions exist from one logic to the other. Some consequences about complexity are given. We report about first experiments and the consequences about possible improvements in existing implementations are analyzed.Comment: Extended version of a paper submitted at TIME 2011: contains proofs, additional examples & figures, additional comparison between classical LTL/schemata algorithms up to the provided translations, and an example of how to do model checking with schemata; 36 pages, 8 figure
    • …
    corecore