1,672 research outputs found

    State-of-the-art of analytical techniques to determine food fraud in olive oils

    Get PDF
    The benefits of the food industry compared to other sectors are much lower, which is why producers are tempted to commit fraud. Although it is a bad practice committed with a wide variety of foods, it is worth noting the case of olive oil because it is a product of great value and with a high percentage of fraud. It is for all these reasons that the authenticity of olive oil has become a major problem for producers, consumers, and legislators. To avoid such fraud, it is necessary to develop analytical techniques to detect them. In this review, we performed a complete analysis about the available instrumentation used in olive fraud which comprised spectroscopic and spectrometric methodology and analyte separation techniques such as liquid chromatography and gas chroma-tography. Additionally, other methodology including protein-based biomolecular techniques and analytical approaches like metabolomic, hhyperspectral imaging and chemometrics are discussed.The research leading to these results was supported by MICINN with the RamĂłn&Cajal grant for M. A. Prieto (RYC-2017-22891); by Xunta de Galicia and University of Vigo supporting the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096) and the pre-doctoral grants for A. G. Pereira (ED481A-2019/0228) and P. GarcĂ­a-Oliveira (ED481A-2019/295) and by University of Vigo supporting the predoctoral grant for M. Carpena (Uvigo-00VI 131H 6410211).info:eu-repo/semantics/publishedVersio

    Computational Prediction and Rational Design of Novel Clusters, Nanoparticles, and Solid State Materials

    Get PDF
    The creation of new materials is absolutely essential for developing new technologies. However, experimental efforts toward the material discovery are usually based on trial-and-error approach and thus require a huge amount of time and money. Alternatively, computational predictions can now provide a more systematic, rapid, inexpensive, and reliable method for the design of novel materials with properties suitable for new technologies. This dissertation describes the technique of theoretical predictions and presents the results on the successfully predicted and already produced (in some cases) unusual molecules, clusters, nanoparticles, and solids. The major part of scientific efforts in this dissertation was devoted to rationalizing of size- and composition-dependent properties of the materials based on understanding of their electronic structure and chemical bonding. It was shown that understanding relations between bonding and geometric structure, bonding and stability, and bonding and reactivity is an important step toward rational design of new, yet unknown materials with unusual properties. Our findings led to the discovery of the first simplest inorganic double helix structures, which can be used in the design of novel molecular devices. A significant part of this work also deals with the pseudo John-Teller effect, which potentially can be a powerful tool for rationalizing and predicting molecular and solid state structures, their deformations, transformations, and properties. Therefore, the works on the pseudo Jahn-Teller effect presented in this dissertation can be considered the steps toward further generalization and elevation of the pseudo Jahn-Teller effect to a higher level of understanding of the origin of molecular and solid state properties

    Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode

    Get PDF
    The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening

    MIXTURE FRACTION IMAGING BASED ON PHOTODISSOCIATION SPECTROSCOPY AND TWO PHOTON LASER INDUCED FLUORESCENCE

    Get PDF
    The study of turbulent combustion calls for new diagnostics that can measure multidimensional mixture fraction under a wide range of flame conditions. A laser diagnostic technique based on photodissociation spectroscopy (PDS) is proposed to address this need. This thesis describes the concept of the PDS-based diagnostic, reports its experimental demonstration in a non-premixed jet flame, and assesses its performance and applicable range. The two-photon laser induced fluorescence (TPLIF) technique used in conjugate with the PDS is analyzed numerically in line and planar imaging configuration. The new mixture fraction imaging technique is centered around the creative use of photodissociation (PD) for flow visualization. A carefully chosen PD precursor is seeded into the flow of interest to measure mixture fraction. The precursor is chosen such that 1) both the precursor itself and the products formed from the precursor (if it reacts) can be completely and rapidly photodissociated; thus one of the photofragments forms a conserved scalar and can be used to infer the mixture fraction, and 2) the target photofragment offers friendly spectroscopic properties (e.g., strong laser induced fluorescence signals and/or simple signal interpretation) so multidimensional imaging can be readily obtained. Molecular iodine (I2) was identified as a precursor satisfying both requirements and was seeded into a carbon monoxide (CO)/air jet flame for single-shot two-dimensional imaging of mixture fraction. This demonstration illustrates the potential of the PDS-based technique to overcome the limitations of existing techniques, and to provide multidimensional measurements of mixture fraction in a variety of reactive flows. The thesis also analyzes the imaging applications of TPLIF, which is a promising technique in the planar imaging of mixture fraction. Models are developed based on rate equation approximations and Monte Carlo simulation, with a focus on the effect of amplified spontaneous emission (ASE) on TPLIF signal interpretation. Results obtained are expected to also enhance the accuracy and applicable range of TPLIF technique in other flow imaging applications, beyond the mixture fraction imaging considered in this research

    Extracting Information from Adaptive Control Experiments

    Full text link
    Optical control of chemical reactivity is achieved through the use of photonic reagents, that is, “shaped” ultrafast optical pulses created using a pulse shaper. It has been demonstrated in a number of molecular systems that these pulses can effectively guide the system into a desired final state. Effective pulses are often found through an experimental search involving thousands of individual measurements. An examination of the pulses tested in these experiments can reveal the pulse features responsible for control and also the underlying molecular dynamics. In this article we review attempts to extract information from optical control experiments using adaptive learning algorithms to search the available parameter space, and we discuss how these kinds of experiments can be used to achieve and understand multiphoton optical control.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91361/1/397_ftp.pd

    Cryogenic Ion Vibrational Spectroscopy of Gas-Phase Clusters: Structure, Anharmonicity and Fluxionality

    No full text
    Gas-phase clusters are aggregates of a countable number of particles, which exhibit size-dependent physical and chemical properties that typically lie in the non-scalable size regime. These properties can be systematically characterized at a molecular level with respect to composition, size and charge state. This allows studying how macroscopic properties of condensed matter, e.g. phase transitions or metallic behavior, emerge from the atomic or molecular properties as a function of cluster size. Furthermore, smaller clusters are also amenable to high-level quantum chemical calculations, making them ideal model systems for understanding phenomena in more complex heterogeneous matter. The main advantage here is that clusters can be studied with a very high degree of selectivity and sensitivity, under well-defined conditions and in the absence of perturbing interaction with an environment. The studies presented in this theses focus on the structure characterization of ionic clusters using cryogenic ion vibrational spectroscopy. This technique combines cryogenic ion trapping with mass spectrometric schemes and infrared photodissociation (IRPD) spectroscopy. It makes use of an ion-trap triple mass spectrometer in combination with various light sources that grant access to a wide range of the infrared spectrum (210-4000 cm-1). Structures are typically assigned by comparing experimental IRPD spectra with computed vibrational spectra. The structures of aluminum oxide clusters and their interaction with water are studied in the framework of the collaborative research center CRC1109 "Understanding of Metal Oxide / Water Systems at the Molecular Scale: Structural Evolution, Interfaces, and Dissolution". This project aims at gaining a molecular level understanding of the mechanisms involved in oxide formation and dissolution. Section 4.1 and 4.2 present results of IRPD spectroscopy experiments on small mono and dialuminum oxide anions and on the anionic cluster series (Al2O3)nAlO2- with n = 0 to 6. These studies discuss the effects of the distribution of the excess charge on the cluster structure, analyze how structural properties evolve with size and how these relate to those of nanoparticles and crystal surfaces. The dissociative adsorption of water by Al-oxide clusters is investigated in Section 4.3.2. Boron exhibits a rich variety of polymorphs with the B12 icosahedron as a common building block. This three dimensional (3D) structure is retained in the halogenated closo-dodecaborate dianions (B12X122-). On the other hand, small pure boron clusters are essentially planar. The study presented in Section 5.2 investigates the 3D to 2D structural transition by probing the vibrational spectra of partially deiodinated B12In2- clusters as a function of decreasing n. The results presented in Section 5.1 show that B13+ has a planar structure consisting of two concentric rings. As a result of delocalized aromatic bonding, this structure is particularly stable without being rigid as it permits an almost free rotation of the inner ring. Protonated water clusters are model systems for understanding protons in aqueous solutions. The interpretation of their vibrational spectra is a challenge for state-of-the-art electronic structure calculations and therefore often prone to controversies. The results presented in Chapter 6 clear existing doubts over the assignment of the protonated water pentamer structure and the vibrational fingerprints of the embedded distorted H3O+. This study laid the foundation for a subsequent series of measurements which provided crucial new insights into the proton transfer mechanism in water

    Experimental and theoretical investigation of drotaverine binding to bovine serum albumin

    Get PDF
    This study was motivated by the need to provide more insight into the possible mechanism of the intermolecular interactions between antispasmodic drug drotaverine and one of the serum albumins (BSA), with the aim to indicate the most probable sites of these interactions. For this purpose both experimental (spectrofluorometric titration at various temperatures) and theoretical (molecular mechanics) methods have been applied. The obtained results clearly showed that drotaverine quenched BSA fluorescence, and the most probable mechanism is static quenching. The negative value of the theoretically predicted binding free Gibbs energy (-23.8 kJ/mol) confirmed the existence of the intermolecular interactions involving drotaverine and one tryptophan within BSA protein and was well agreed with the experimentally determined value of -25.2 kJ/mol

    The 9th European Conference on Marine Natural Products

    Get PDF
    Acknowledgments This work was supported by grants from the European Commission within its FP7 Programme, under the thematic area KBBE.2012.3.2-01 with Grant Number Nos. 311932 “SeaBioTech”, 311848 “BlueGenics”, and 312184 PharmaSea.Peer reviewedPublisher PD

    Techniques for early diagnosis of oral squamous cell carcinoma: systematic review

    Get PDF
    Background and objectives: The diagnosis of early oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) is of paramount clinical importance given the mortality rate of late stage disease. The aim of this study is to review the literature to assess the current situation and progress in this area. Material and Methods: A search in Cochrane and PubMed (January 2006 to December 2013) has been used with the key words “squamous cell carcinoma”, “early diagnosis” “oral cavity”, “Potentially Malignant Disorders” y “premalignant lesions”. The inclusion criteria were the use of techniques for early diagnosis of OSCC and OPMD, 7 years aged articles and publications written in English, French or Spanish. The exclusion criteria were case reports and studies in other languages. Results: Out of the 89 studies obtained initially from the search 60 articles were selected to be included in the systematic review: 1 metaanalysis, 17 systematic reviews, 35 prospective studies, 5 retrospective studies, 1 consensus and 1 semi-structured interviews. Conclusions: The best diagnostic technique is that which we have sufficient experience and training. Definitely tissue biopsy and histopathological examination should remain the gold standard for oral cancer diagnose. In this systematic review it has not been found sufficient scientific evidence on the majority of proposed techniques for early diagnosis of OSCC, therefore more extensive and exhaustive studies are needed

    Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe

    Get PDF
    The filamentous bacteriophages are flexible rods about 1 to 2 microns long and 6 nm in diameter, with a helical shell of protein subunits surrounding a DNA core. The approximately 50-residue coat protein subunit is largely alpha-helix and the axis of the alpha-helix makes a small angle with the axis of the virion. The protein shell can be considered in three sections: the outer surface, occupied by the N-terminal region of the subunit, rich in acidic residues that interact with the surrounding solvent and give the virion a low isoelectric point; the interior of the shell, including a 19-residue stretch of apolar side-chains, where protein subunits interact mainly with each other; and the inner surface, occupied by the C-terminal region of the subunit, rich in basic residues that interact with the DNA core. The fact that virtually all protein side-chain interactions are between different subunits in the coat protein array, rather than within subunits, makes this a useful model system for studies of interactions between alpha-helix subunits in a macromolecular assembly. We describe molecular models of the class I filamentous bacteriophages. This class includes strains fd, f1, M13 (these 3 very similar strains are members of the Ff group), If1 and IKe. Our model of fd has been refined to fit quantitative X-ray fibre diffraction data to 30 A resolution in the meridional direction and 7 A resolution in the equatorial direction. A simulated 3.3 A resolution diffraction pattern from this model has the same general distribution of intensity as the experimental diffraction pattern. The observed diffraction data at 7 A resolution are fitted much better by the calculated diffraction pattern of our molecular model than by that of a model in which the alpha-helix subunit is represented by a rod of uniform density. The fact that our fd model explains the fd diffraction data is only part of our structure analysis. The atomic details of the model are supported by non-diffraction data, in part previously published and in part newly reported here. These data include information about permitted or forbidden side-chain replacements, about the effect of chemical modification, and about spectroscopic experiments.(ABSTRACT TRUNCATED AT 400 WORDS
    • 

    corecore