9,315 research outputs found

    3D printing and immersive visualization for improved perception of ancient artifacts

    Get PDF
    This article investigates the use of 3D immersive virtual environments and 3D prints for interaction with past material culture over traditional observation without manipulation. Our work is motivated by studies in heritage, museum, and cognitive sciences indicating the importance of object manipulation for understanding present and ancient artifacts. While virtual immersive environments and 3D prints have started to be incorporated in heritage research and museum displays as a way to provide improved manipulation experiences, little is known about how these new technologies affect the perception of our past. This article provides first results obtained with three experiments designed to investigate the benefits and tradeoffs in using these technologies. Our results indicate that traditional museum displays limit the experience with past material culture, and reveal how our sample of participants favor tactile and immersive 3D virtual experiences with artifacts over visual non-manipulative experiences with authentic objects. This paper is part of a larger study on how people perceive ancient artifacts, which was partially funded by the University of California Humanities Network and the Center for the Humanities at the University of California, Merced.This is the author accepted manuscript. The final version is available from MIT Press via http://dx.doi.org/10.1162/PRES_a_0022

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Gesture types for functions

    Full text link
    This paper reports on the different gesture types employed by twenty-three Year 10 students as they endeavoured to explain their understanding of rate of change associated with the functions resulting from two different computer simulations. These gestures also have application to revealing students’ understanding of functions. However, interpretation of gesture is problematic but classification of gestures assisted in the analysis of the videorecorded interviews probing participants’ conceptions of rate of change. This paper builds on the classifications reported in previous research. Five additional gesture types are presented, which provide insights into students’ thinking about rate of change, and hence functions

    Narration and multimodality: The role of the human body and material objects in science teaching

    Get PDF
    This article seeks to shed light on the semiotic approach to science teaching and learning. Essentially, the mental representations of learners are also affected by the sign vehicles employed to communicate ideas in the material world. Thus, any learning object also appears as a material representation, consisting of acoustic and visual forms, which affect its content. The human body’s kinetic modalities, spatial configurations (i.e., graphs, images), material objects, prosody, as well as the written and spoken word constitute the perceptual data that encode the concepts. This particular paper deals with the possibility that the more emphatic signifiers, i.e., the human body and material objects, can create narrative spaces and produce meaning during science teaching. It also discusses alternative uses of material objects along with the multiple interpretations their visual images can evoke. As regards the human body, iconic, deictic, and ergotic gestures are analyzed as forms that produce meaning and are autonomous and dynamic when working with the other semiotic systems. Both material objects and the human body rely upon the ability of the learners’ imagination to transport them to narrative worlds located outside the classroom

    Systematic literature review of hand gestures used in human computer interaction interfaces

    Get PDF
    Gestures, widely accepted as a humans' natural mode of interaction with their surroundings, have been considered for use in human-computer based interfaces since the early 1980s. They have been explored and implemented, with a range of success and maturity levels, in a variety of fields, facilitated by a multitude of technologies. Underpinning gesture theory however focuses on gestures performed simultaneously with speech, and majority of gesture based interfaces are supported by other modes of interaction. This article reports the results of a systematic review undertaken to identify characteristics of touchless/in-air hand gestures used in interaction interfaces. 148 articles were reviewed reporting on gesture-based interaction interfaces, identified through searching engineering and science databases (Engineering Village, Pro Quest, Science Direct, Scopus and Web of Science). The goal of the review was to map the field of gesture-based interfaces, investigate the patterns in gesture use, and identify common combinations of gestures for different combinations of applications and technologies. From the review, the community seems disparate with little evidence of building upon prior work and a fundamental framework of gesture-based interaction is not evident. However, the findings can help inform future developments and provide valuable information about the benefits and drawbacks of different approaches. It was further found that the nature and appropriateness of gestures used was not a primary factor in gesture elicitation when designing gesture based systems, and that ease of technology implementation often took precedence

    Video evidence : what gestures tell us about students\u27 understanding of rate of change

    Full text link
    This paper reports on insights into students&rsquo; understanding of the concept of rate of change, provided by examining the gestures made, by 25 Year 10 students, in videorecorded interviews. Detailed analysis, of both the sound and images, illuminates the meaning of rate-related gestures. Findings indicate that students often use the symbols and metaphors of gesture to complement, supplement, or even contradict verbal descriptions. Many students demonstrated, by the combination of their words and gestures, a sound qualitative understanding of constant rate, with a few attempting to quantify rate. The interpretation of gestures may provide teachers with a better understanding of the progress in their students&rsquo; thinking.<br /

    Integration and representation issues in the annotation of multimodal data

    Get PDF
    Proceedings of the NODALIDA 2009 workshop Multimodal Communication &mdash; from Human Behaviour to Computational Models. Editors: Costanza Navarretta, Patrizia Paggio, Jens Allwood, Elisabeth Alsén and Yasuhiro Katagiri. NEALT Proceedings Series, Vol. 6 (2009), 25-31. © 2009 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/9208

    Teaching and Learning Spatial Thinking with Young Students: the Use and Influence of External Representations

    Get PDF
    Previous research suggests spatial thinking is fundamental to mathematics learning (Bronowski, 1947; Clements & Sarama, 2007, 2011), and acts as a predictor for future mathematical achievement levels (Battista, 1990; Gunderson et al., 2012). However, research with regard to spatial thinking is almost non-existent in early years mathematics classrooms (Bruce, Moss, & Ross, 2012; Clements & Sarama, 2011; Newcombe & Frick, 2010; Sarama & Clements, 2009, 2011; Stipek, 2013), and how to teach it in these contexts has received little attention. Fewer studies again have focused on the use of virtual manipulatives in influencing young students’ spatial thinking (Highfield & Mulligan, 2007; Ng & Sinclair, 2015). Despite a recent surge in studies exploring the influence of virtual manipulatives in mathematics classrooms, little is known about how these manipulatives compare to physical manipulatives, especially in regard to the changes that occur in the social interactions between teacher and students during the learning process. To date, there has been no comparative study conducted that explores the influence of different external representations (e.g., physical manipulatives and virtual manipulatives) on both the teaching and the learning aspects within mathematics classrooms. The purpose of this research is to explore the use of external representations (i.e., physical manipulatives as compared to virtual manipulatives) in the mathematics classroom and how these representations support young, disadvantaged students’ spatial thinking. The use of manipulatives is a common starting point for the teaching and learning of spatial thinking. Previous research on manipulative use (both physical and virtual) in mathematics education has yielded positive results with regard to student learning (Clements, 1999; Heddens, 1997; Highfield & Mulligan, 2007; Riconscente, 2013; Siemon et al., 2011; Warren, 2006; Warren & Miller, 2013). Recent studies indicate that these newer digital technologies promote interactions between visual and kinaesthetic learning, which have been shown to support the teaching and learning of spatial thinking (Battista, 2008; Bruce, McPherson, Sabeti, & Flynn, 2011; Clements & Sarama, 2011; Highfield & Mulligan, 2007; Jorgensen & Lowrie, 2012; Sinclair, de Freitas, & Ferrara, 2013; Sinclair & Moss, 2012). However, results from comparative studies between physical manipulatives and virtual manipulatives have been varied (e.g., Brown, 2007; Olkum, 2003; Suh, 2005). It is proposed that different types of manipulatives influence the teaching and learning of spatial thinking in different ways. By viewing the learning of spatial thinking through a sociocultural perspective, aspects of the teaching and learning of spatial learning in mathematics classrooms can be scrutinised. A review of the literature generated two research questions that informed the research design of this study. These were: 1. What influence do different external representations (e.g., physical manipulatives and virtual manipulatives) have on young students’ learning of spatial thinking? 2. What changes occur in the teaching and learning of spatial thinking when using different external representations (e.g., physical manipulatives and virtual manipulatives)? Given that the study focused on exploring students’ spatial thinking as they construct their knowledge from the interactions they experience with external representations, an interpretive paradigm was an appropriate epistemological, ontological and methodological stance adopted for the research. Vygotsky’s (1978) sociocultural theory provided a lens to interpret the interaction between teacher and students. Practical application of this theory permitted a narrowing lens to pinpoint particular aspects of the teaching of spatial thinking and students’ learning of spatial thinking. Within this study, these practical applications included the use of Anghileri’s “hierarchy of scaffolding practices” (2006) and Sfard’s “commognitive approach” (2008). The methodology for the study included teaching experiments. Data collection methods incorporated the use of pre-test, post-test and post post-testing using spatial testing material and observations of lessons from a teaching experiment (n = 68) comprising six lessons (three based on spatial orientation concepts and three based on spatial visualisation concepts). Findings from this study provide further insights into the teaching and learning of spatial thinking. First, the use of manipulatives (either physical or virtual) appears to be important to students’ learning of spatial thinking. Furthermore, the use of virtual manipulatives increases the communicative functions used by students, thus benefiting their spatial thinking. Second, teachers need to be able to instantaneously access deep content and pedagogical knowledge in order to maintain their role as “more knowledgeable other” and continually contribute to the teaching and learning of spatial thinking. Finally, teaching and learning appears to be positively influenced when both the teacher and students are major contributors to the classroom discourse. This study contributes to the understanding of how different external representations influence the teaching and learning of spatial thinking. Theoretical contributions to new knowledge include a hypothesised theory on the interaction between teacher, student and manipulatives type. Implications for future classroom practice include placing importance on the use of manipulatives and communication in mathematics classrooms. Furthermore, teachers need to be aware that their ability to instantaneously access deep levels of content and pedagogical knowledge to further develop students’ spatial thinking is essential and that for optimum learning to occur, both the teacher and students need to be major contributors to the teaching and learning process
    corecore