6,291 research outputs found

    Random Topologies and the emergence of cooperation: the role of short-cuts

    Get PDF
    We study in detail the role of short-cuts in promoting the emergence of cooperation in a network of agents playing the Prisoner's Dilemma Game (PDG). We introduce a model whose topology interpolates between the one-dimensional euclidean lattice (a ring) and the complete graph by changing the value of one parameter (the probability p to add a link between two nodes not already connected in the euclidean configuration). We show that there is a region of values of p in which cooperation is largely enhanced, whilst for smaller values of p only a few cooperators are present in the final state, and for p \rightarrow 1- cooperation is totally suppressed. We present analytical arguments that provide a very plausible interpretation of the simulation results, thus unveiling the mechanism by which short-cuts contribute to promote (or suppress) cooperation

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by most

    Get PDF
    This paper proposes a way to compute the meanings associated with sentences with generic noun phrases corresponding to the generalized quantifier most. We call these generics specimens and they resemble stereotypes or prototypes in lexical semantics. The meanings are viewed as logical formulae that can thereafter be interpreted in your favourite models. To do so, we depart significantly from the dominant Fregean view with a single untyped universe. Indeed, our proposal adopts type theory with some hints from Hilbert \epsilon-calculus (Hilbert, 1922; Avigad and Zach, 2008) and from medieval philosophy, see e.g. de Libera (1993, 1996). Our type theoretic analysis bears some resemblance with ongoing work in lexical semantics (Asher 2011; Bassac et al. 2010; Moot, Pr\'evot and Retor\'e 2011). Our model also applies to classical examples involving a class, or a generic element of this class, which is not uttered but provided by the context. An outcome of this study is that, in the minimalism-contextualism debate, see Conrad (2011), if one adopts a type theoretical view, terms encode the purely semantic meaning component while their typing is pragmatically determined

    Catching homologies by geometric entropy

    Full text link
    A geometric entropy is defined as the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale--free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies.Comment: 12 pages, 2 Figure
    corecore