2,274 research outputs found

    A VECTOR ERROR CORRECTION AND NONNESTED MODELLING OF MONEY DEMAND FUNCTION IN NIGERIA

    Get PDF
    This paper examines the stability of the demand for money in nigeria. With relatively simple model specifying a vector valued autoregressive process(VAR), the hypothesis of the existence of cointegration vectors is formulated as the hypothesis of reduced rank of the longrun impact matrix. This enabled us to derive estimates and test statistics for the hypothesis of a given number of cointegration vectors. The money demand function was found to be stable and evidence gathered from the non- nested tests suggest that income is the more appropriate scale variable in the estimation of money demand function in nigeria.vector error correction model cointegration money demand consumption nonnested models

    RNA Folding with Soft Constraints: Reconciliation of Probing Data and Thermodynamic Secondary Structure Prediction

    Get PDF
    Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted using ā€˜pseudo-energiesā€™ to minimize the discrepancy between prediction and experiment. Our framework differs from related approaches that used pseudo-energies in several key aspects. (i) The energy model is only changed when necessary and no adjustments are made if prediction and experiment are consistent. (ii) Pseudo-energies remain biophysically interpretable and hold positional information where experiment and model disagree. (iii) The whole thermodynamic ensemble of structures is considered thus allowing to reconstruct mixtures of suboptimal structures from seemingly contradicting data. (iv) The noise of the energy model and the experimental data is explicitly modeled leading to an intuitive weighting factor through which the problem can be seen as folding with ā€˜softā€™ constraints of different strength. We present an efficient algorithm to iteratively calculate pseudo-energies within this framework and demonstrate how this approach can be used in combination with SHAPE chemical probing data to improve secondary structure prediction. We further demonstrate that the pseudo-energies correlate with biophysical effects that are known to affect RNA folding such as chemical nucleotide modifications and protein binding.Austrian Science Fund. Erwin Schrodinger Fellowship (J2966-B12

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity

    Intelligent Case Assignment Method Based on the Chain of Criminal Behavior Elements

    Get PDF
    The assignment of cases means the court assigns cases to specific judges. The traditional case assignment methods, based on the facts of a case, are weak in the analysis of semantic structure of the case not considering the judges\u27 expertise. By analyzing judges\u27 trial logic, we find that the order of criminal behaviors affects the final judgement. To solve these problems, we regard intelligent case assignment as a text-matching problem, and propose an intelligent case assignment method based on the chain of criminal behavior elements. This method introduces the chain of criminal behavior elements to enhance the structured semantic analysis of the case. We build a BCTA (Bert-Cnn-Transformer-Attention) model to achieve intelligent case assignment. This model integrates a judge\u27s expertise in the judge\u27s presentation, thus recommending the most compatible judge for the case. Comparing the traditional case assignment methods, our BCTA model obtains 84% absolutely considerable improvement under P@1. In addition, comparing other classic text matching models, our BCTA model achieves an absolute considerable improvement of 4% under P@1 and 9% under Macro F1. Experiments conducted on real-world data set demonstrate the superiority of our method
    • ā€¦
    corecore