1,343 research outputs found

    Computational identification of ubiquitylation sites from protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ubiquitylation plays an important role in regulating protein functions. Recently, experimental methods were developed toward effective identification of ubiquitylation sites. To efficiently explore more undiscovered ubiquitylation sites, this study aims to develop an accurate sequence-based prediction method to identify promising ubiquitylation sites.</p> <p>Results</p> <p>We established an ubiquitylation dataset consisting of 157 ubiquitylation sites and 3676 putative non-ubiquitylation sites extracted from 105 proteins in the UbiProt database. This study first evaluates promising sequence-based features and classifiers for the prediction of ubiquitylation sites by assessing three kinds of features (amino acid identity, evolutionary information, and physicochemical property) and three classifiers (support vector machine, <it>k</it>-nearest neighbor, and NaïveBayes). Results show that the set of used 531 physicochemical properties and support vector machine (SVM) are the best kind of features and classifier respectively that their combination has a prediction accuracy of 72.19% using leave-one-out cross-validation.</p> <p>Consequently, an informative physicochemical property mining algorithm (IPMA) is proposed to select an informative subset of 531 physicochemical properties. A prediction system UbiPred was implemented by using an SVM with the feature set of 31 informative physicochemical properties selected by IPMA, which can improve the accuracy from 72.19% to 84.44%. To further analyze the informative physicochemical properties, a decision tree method C5.0 was used to acquire if-then rule-based knowledge of predicting ubiquitylation sites. UbiPred can screen promising ubiquitylation sites from putative non-ubiquitylation sites using prediction scores. By applying UbiPred, 23 promising ubiquitylation sites were identified from an independent dataset of 3424 putative non-ubiquitylation sites, which were also validated by using the obtained prediction rules.</p> <p>Conclusion</p> <p>We have proposed an algorithm IPMA for mining informative physicochemical properties from protein sequences to build an SVM-based prediction system UbiPred. UbiPred can predict ubiquitylation sites accompanied with a prediction score each to help biologists in identifying promising sites for experimental verification. UbiPred has been implemented as a web server and is available at <url>http://iclab.life.nctu.edu.tw/ubipred</url>.</p

    An integrated method for cancer classification and rule extraction from microarray data

    Get PDF
    Different microarray techniques recently have been successfully used to investigate useful information for cancer diagnosis at the gene expression level due to their ability to measure thousands of gene expression levels in a massively parallel way. One important issue is to improve classification performance of microarray data. However, it would be ideal that influential genes and even interpretable rules can be explored at the same time to offer biological insight

    Machine Learning in Enzyme Engineering

    Get PDF
    Enzyme engineering plays a central role in developing efficient biocatalysts for biotechnology, biomedicine, and life sciences. Apart from classical rational design and directed evolution approaches, machine learning methods have been increasingly applied to find patterns in data that help predict protein structures, improve enzyme stability, solubility, and function, predict substrate specificity, and guide rational protein design. In this Perspective, we analyze the state of the art in databases and methods used for training and validating predictors in enzyme engineering. We discuss current limitations and challenges which the community is facing and recent advancements in experimental and theoretical methods that have the potential to address those challenges. We also present our view on possible future directions for developing the applications to the design of efficient biocatalysts

    GGL-PPI: Geometric Graph Learning to Predict Mutation-Induced Binding Free Energy Changes

    Full text link
    Protein-protein interactions (PPIs) are critical for various biological processes, and understanding their dynamics is essential for decoding molecular mechanisms and advancing fields such as cancer research and drug discovery. Mutations in PPIs can disrupt protein binding affinity and lead to functional changes and disease. Predicting the impact of mutations on binding affinity is valuable but experimentally challenging. Computational methods, including physics-based and machine learning-based approaches, have been developed to address this challenge. Machine learning-based methods, fueled by extensive PPI datasets such as Ab-Bind, PINT, SKEMPI, and others, have shown promise in predicting binding affinity changes. However, accurate predictions and generalization of these models across different datasets remain challenging. Geometric graph learning has emerged as a powerful approach, combining graph theory and machine learning, to capture structural features of biomolecules. We present GGL-PPI, a novel method that integrates geometric graph learning and machine learning to predict mutation-induced binding free energy changes. GGL-PPI leverages atom-level graph coloring and multi-scale weighted colored geometric subgraphs to extract informative features, demonstrating superior performance on three validation datasets, namely AB-Bind, SKEMPI 1.0, and SKEMPI 2.0 datasets. Evaluation on a blind test set highlights the unbiased predictions of GGL-PPI for both direct and reverse mutations. The findings underscore the potential of GGL-PPI in accurately predicting binding free energy changes, contributing to our understanding of PPIs and aiding drug design efforts

    Doctor of Philosophy

    Get PDF
    dissertationRapidly evolving technologies such as chip arrays and next-generation sequencing are uncovering human genetic variants at an unprecedented pace. Unfortunately, this ever growing collection of gene sequence variation has limited clinical utility without clear association to disease outcomes. As electronic medical records begin to incorporate genetic information, gene variant classification and accurate interpretation of gene test results plays a critical role in customizing patient therapy. To verify the functional impact of a given gene variant, laboratories rely on confirming evidence such as previous literature reports, patient history and disease segregation in a family. By definition variants of uncertain significance (VUS) lack this supporting evidence and in such cases, computational tools are often used to evaluate the predicted functional impact of a gene mutation. This study evaluates leveraging high quality genotype-phenotype disease variant data from 20 genes and 3986 variants, to develop gene-specific predictors utilizing a combination of changes in primary amino acid sequence, amino acid properties as descriptors of mutation severity and Naïve Bayes classification. A Primary Sequence Amino Acid Properties (PSAAP) prediction algorithm was then combined with well established predictors in a weighted Consensus sum in context of gene-specific reference intervals for known phenotypes. PSAAP and Consensus were also used to evaluate known variants of uncertain significance in the RET proto-oncogene as a model gene. The PSAAP algorithm was successfully extended to many genes and diseases. Gene-specific algorithms typically outperform generalized prediction tools. Characteristic mutation properties of a given gene and disease may be lost when diluted into genomewide data sets. A reliable computational phenotype classification framework with quantitative metrics and disease specific reference ranges allows objective evaluation of novel or uncertain gene variants and augments decision making when confirming clinical information is limited

    Computational and Experimental Approaches to Reveal the Effects of Single Nucleotide Polymorphisms with Respect to Disease Diagnostics

    Get PDF
    DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and in vivo. It is emphasized that the problem is complicated and successful detection of a pathogenic mutation frequently requires a combination of several methods and a knowledge of the biological phenomena associated with the corresponding macromolecules

    PRETICTIVE BIOINFORMATIC METHODS FOR ANALYZING GENES AND PROTEINS

    Get PDF
    Since large amounts of biological data are generated using various high-throughput technologies, efficient computational methods are important for understanding the biological meanings behind the complex data. Machine learning is particularly appealing for biological knowledge discovery. Tissue-specific gene expression and protein sumoylation play essential roles in the cell and are implicated in many human diseases. Protein destabilization is a common mechanism by which mutations cause human diseases. In this study, machine learning approaches were developed for predicting human tissue-specific genes, protein sumoylation sites and protein stability changes upon single amino acid substitutions. Relevant biological features were selected for input vector encoding, and machine learning algorithms, including Random Forests and Support Vector Machines, were used for classifier construction. The results suggest that the approaches give rise to more accurate predictions than previous studies and can provide valuable information for further experimental studies. Moreover, seeSUMO and MuStab web servers were developed to make the classifiers accessible to the biological research community. Structure-based methods can be used to predict the effects of amino acid substitutions on protein function and stability. The nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) located at the protein binding interface have dramatic effects on protein-protein interactions. To model the effects, the nsSNPs at the interfaces of 264 protein-protein complexes were mapped on the protein structures using homology-based methods. The results suggest that disease-causing nsSNPs tend to destabilize the electrostatic component of the binding energy and nsSNPs at conserved positions have significant effects on binding energy changes. The structure-based approach was developed to quantitatively assess the effects of amino acid substitutions on protein stability and protein-protein interaction. It was shown that the structure-based analysis could help elucidate the mechanisms by which mutations cause human genetic disorders. These new bioinformatic methods can be used to analyze some interesting genes and proteins for human genetic research and improve our understanding of their molecular mechanisms underlying human diseases
    corecore