1,849 research outputs found

    Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation

    Full text link
    Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation after such a musculoskeletal injury remains a prolonged process with a very variable outcome. Accurately predicting rehabilitation outcome is crucial for treatment decision support. However, it is challenging to train an automatic method for predicting the ATR rehabilitation outcome from treatment data, due to a massive amount of missing entries in the data recorded from ATR patients, as well as complex nonlinear relations between measurements and outcomes. In this work, we design an end-to-end probabilistic framework to impute missing data entries and predict rehabilitation outcomes simultaneously. We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines. The proposed method demonstrates its clear superiority over traditional methods which typically perform imputation and prediction in two separate stages

    Preterm Birth Prediction: Deriving Stable and Interpretable Rules from High Dimensional Data

    Full text link
    Preterm births occur at an alarming rate of 10-15%. Preemies have a higher risk of infant mortality, developmental retardation and long-term disabilities. Predicting preterm birth is difficult, even for the most experienced clinicians. The most well-designed clinical study thus far reaches a modest sensitivity of 18.2-24.2% at specificity of 28.6-33.3%. We take a different approach by exploiting databases of normal hospital operations. We aims are twofold: (i) to derive an easy-to-use, interpretable prediction rule with quantified uncertainties, and (ii) to construct accurate classifiers for preterm birth prediction. Our approach is to automatically generate and select from hundreds (if not thousands) of possible predictors using stability-aware techniques. Derived from a large database of 15,814 women, our simplified prediction rule with only 10 items has sensitivity of 62.3% at specificity of 81.5%.Comment: Presented at 2016 Machine Learning and Healthcare Conference (MLHC 2016), Los Angeles, C
    • …
    corecore