274 research outputs found

    Digital Forensics AI: on Practicality, Optimality, and Interpretability of Digital Evidence Mining Techniques

    Get PDF
    Digital forensics as a field has progressed alongside technological advancements over the years, just as digital devices have gotten more robust and sophisticated. However, criminals and attackers have devised means for exploiting the vulnerabilities or sophistication of these devices to carry out malicious activities in unprecedented ways. Their belief is that electronic crimes can be committed without identities being revealed or trails being established. Several applications of artificial intelligence (AI) have demonstrated interesting and promising solutions to seemingly intractable societal challenges. This thesis aims to advance the concept of applying AI techniques in digital forensic investigation. Our approach involves experimenting with a complex case scenario in which suspects corresponded by e-mail and deleted, suspiciously, certain communications, presumably to conceal evidence. The purpose is to demonstrate the efficacy of Artificial Neural Networks (ANN) in learning and detecting communication patterns over time, and then predicting the possibility of missing communication(s) along with potential topics of discussion. To do this, we developed a novel approach and included other existing models. The accuracy of our results is evaluated, and their performance on previously unseen data is measured. Second, we proposed conceptualizing the term “Digital Forensics AI” (DFAI) to formalize the application of AI in digital forensics. The objective is to highlight the instruments that facilitate the best evidential outcomes and presentation mechanisms that are adaptable to the probabilistic output of AI models. Finally, we enhanced our notion in support of the application of AI in digital forensics by recommending methodologies and approaches for bridging trust gaps through the development of interpretable models that facilitate the admissibility of digital evidence in legal proceedings

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    A Survey on Actionable Knowledge

    Full text link
    Actionable Knowledge Discovery (AKD) is a crucial aspect of data mining that is gaining popularity and being applied in a wide range of domains. This is because AKD can extract valuable insights and information, also known as knowledge, from large datasets. The goal of this paper is to examine different research studies that focus on various domains and have different objectives. The paper will review and discuss the methods used in these studies in detail. AKD is a process of identifying and extracting actionable insights from data, which can be used to make informed decisions and improve business outcomes. It is a powerful tool for uncovering patterns and trends in data that can be used for various applications such as customer relationship management, marketing, and fraud detection. The research studies reviewed in this paper will explore different techniques and approaches for AKD in different domains, such as healthcare, finance, and telecommunications. The paper will provide a thorough analysis of the current state of AKD in the field and will review the main methods used by various research studies. Additionally, the paper will evaluate the advantages and disadvantages of each method and will discuss any novel or new solutions presented in the field. Overall, this paper aims to provide a comprehensive overview of the methods and techniques used in AKD and the impact they have on different domains

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    corecore