82 research outputs found

    Shape preserving C2C^2 interpolatory subdivision schemes

    Get PDF
    Stationary interpolatory subdivision schemes which preserve shape properties such as convexity or monotonicity are constructed. The schemes are rational in the data and generate limit functions that are at least C2C^2. The emphasis is on a class of six-point convexity preserving subdivision schemes that generate C2C^2 limit functions. In addition, a class of six-point monotonicity preserving schemes that also leads to C2C^2 limit functions is introduced. As the algebra is far too complicated for an analytical proof of smoothness, validation has been performed by a simple numerical methodology

    Shape preserving C<sup>2</sup> interpolatory subdivision schemes

    Get PDF

    Bivariate Hermite subdivision

    Get PDF
    A subdivision scheme for constructing smooth surfaces interpolating scattered data in R3\mathbb{R}^3 is proposed. It is also possible to impose derivative constraints in these points. In the case of functional data, i.e., data are given in a properly triangulated set of points {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N from which none of the pairs (xi,yi)(x_i,y_i) and (xj,yj)(x_j,y_j) with iji\neq j coincide, it is proved that the resulting surface (function) is C1C^1. The method is based on the construction of a sequence of continuous splines of degree 3. Another subdivision method, based on constructing a sequence of splines of degree 5 which are once differentiable, yields a function which is C2C^2 if the data are not 'too irregular'. Finally the approximation properties of the methods are investigated

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    The PCHIP subdivision scheme

    Get PDF
    In this paper we propose and analyze a nonlinear subdivision scheme based on the monotononicity-preserving third order Hermite-type interpolatory technique implemented in the PCHIP package in Matlab. We prove the convergence and the stability of the PCHIP nonlinear subdivision process by employing a novel technique based on the study of the generalized Jacobian of the first difference scheme.MTM2011-2274

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    Data visualization using rational spline interpolation

    Get PDF
    AbstractA smooth curve interpolation scheme for positive, monotonic, and convex data has been developed. This scheme uses piecewise rational cubic functions. The two families of parameters, in the description of the rational interpolant, have been constrained to preserve the shape of the data. The rational spline scheme has a unique representation. The degree of smoothness attained is C1

    Visualization Of Curve And Surface Data Using Rational Cubic Ball Functions

    Get PDF
    This study considered the problem of shape preserving interpolation through regular data using rational cubic Ball which is an alternative scheme for rational Bézier functions. A rational Ball function with shape parameters is easy to implement because of its less degree terms at the end polynomial compared to rational Bézier functions. In order to understand the behavior of shape parameters (weights), we need to discuss shape control analysis which can be used to modify the shape of a curve, locally and globally. This issue has been discovered and brought to the study of conversion between Ball and Bézier curve
    corecore