3,972 research outputs found

    Heuristics for the refinement of assumptions in generalized reactivity formulae

    Get PDF
    Reactive synthesis is concerned with automatically generating implementations from formal specifications. These specifications are typically written in the language of generalized reactivity (GR(1)), a subset of linear temporal logic capable of expressing the most common industrial specification patterns, and describe the requirements about the behavior of a system under assumptions about the environment where the system is to be deployed. Oftentimes no implementation exists which guarantees the required behavior under all possible environments, typically due to missing assumptions (this is usually referred to as unrealizability). To address this issue, new assumptions need to be added to complete the specification, a problem known as assumptions refinement. Since the space of candidate assumptions is intractably large, searching for the best solutions is inherently hard. In particular, new methods are needed to (i) increase the effectiveness of the search procedures, measured as the ratio between the number of solutions found and of refinements explored; and (ii) improve the results' quality, defined as the weakness of the solutions. In this thesis we propose a set of heuristics to meet these goals, and a methodology to assess and compare assumptions refinement methods based on quantitative metrics. The heuristics are in the form of algorithms to generate candidate refinements during the search, and quantitative measures to assess the quality of the candidates. We first discuss a heuristic method to generate assumptions that target the cause of unrealizability. This is done by selecting candidate refinement formulas based on Craig's interpolation. We provide a formal underpinning of the technique and evaluate it in terms of our new metric of effectiveness, as defined above, whose value is improved with respect to the state of the art. We demonstrate this on a set of popular benchmarks of embedded software. We then provide a formal, quantitative characterization of the permissiveness of environment assumptions in the form of a weakness measure. We prove that the partial order induced by this measure is consistent with the one induced by implication. The key advantage of this measure is that it allows for prioritizing candidate solutions, as we show experimentally. Lastly, we propose a notion of minimal refinements with respect to the observed counterstrategies. We demonstrate that exploring minimal refinements produces weaker solutions, and reduces the amount of computations needed to explore each refinement. However, this may come at the cost of reducing the effectiveness of the search. To counteract this effect, we propose a hybrid search approach in which both minimal and non-minimal refinements are explored.Open Acces

    GRChombo : Numerical Relativity with Adaptive Mesh Refinement

    Full text link
    In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial "many-boxes-in-many-boxes" mesh hierarchies and massive parallelism through the Message Passing Interface (MPI). GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3+1 setting, whilst also significantly simplifying the process of setting up the mesh for these problems. We show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.Comment: 48 pages, 24 figure

    Numerical relativity simulations of binary neutron stars

    Get PDF
    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasi-equilibrium equal-mass irrotational binary neutron star configurations in quasi-circular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal-gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error-bars on the numerically generated waveforms in the inspiral phase

    Falloff of the Weyl scalars in binary black hole spacetimes

    Full text link
    The peeling theorem of general relativity predicts that the Weyl curvature scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an asymptotically flat spacetime, fall off asymptotically as r^(n-5) along outgoing radial null geodesics. This leads to the interpretation of Psi_4 as outgoing gravitational radiation at large distances from the source. We have performed numerical simulations in full general relativity of a binary black hole inspiral and merger, and have computed the Weyl scalars in the standard tetrad used in numerical relativity. In contrast with previous results, we observe that all the Weyl scalars fall off according to the predictions of the theorem.Comment: 7 pages, 3 figures, published versio

    Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations

    Full text link
    Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest, as studies indicate that this configuration is preferred in nature. If the spins of the two bodies differ, there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of the final merged black hole. We perform an accurate and systematic study of recoil velocities from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum, and whose individual spins range from a = +0.584 to -0.584. In this way we extend and refine the results of a previous study and arrive at a consistent maximum recoil of 448 +- 5 km/s for anti-aligned models as well as to a phenomenological expression for the recoil velocity as a function of spin ratio. This relation highlights a nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis is the identification of different stages in the waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore we are able to identify a pair of terms which are largely responsible for the kick, indicating that an accurate computation can be obtained from modes up to l=3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the radiated angular momentum which can be easily implemented in N-body simulations of compact stellar systems. Our code is calibrated with strict convergence tests and we verify the correctness of our measurements by using multiple independent methods whenever possible.Comment: 24 pages, 15 figures, 5 table
    • …
    corecore