1,911 research outputs found

    Coaxing a planar curve to comply

    Get PDF
    AbstractA long-standing problem in computer graphics is to find a planar curve that is shaped the way you want it to be shaped. A selection of various methods for achieving this goal is presented. The focus is on mathematical conditions that we can use to control curves while still allowing the curves some freedom. We start with methods invented by Newton (1643–1727) and Lagrange (1736–1813) and proceed to recent methods that are the subject of current research. We illustrate almost all the methods discussed with diagrams. Three methods of control that are of special interest are interpolation methods, global minimization methods (such as least squares), and (Bézier) control points. We concentrate on the first of these, interpolation methods

    Instabilities of Spiral Shocks I: Onset of Wiggle Instability and its Mechanism

    Full text link
    We found that loosely wound spiral shocks in an isothermal gas disk caused by a non-axisymmetric potential are hydrodynamically unstable, if the shocks are strong enough. High resolution, global hydrodynamical simulations using three different numerical schemes, i.e. AUSM, CIP, and SPH, show similarly that trailing spiral shocks with the pitch angle of larger than ~10 deg wiggle, and clumps are developed in the shock-compressed layer. The numerical simulations also show clear wave crests that are associated with ripples of the spiral shocks. The spiral shocks tend to be more unstable in a rigidly rotating disk than in a flat rotation. This instability could be an origin of the secondary structures of spiral arms, i.e. the spurs/fins, observed in spiral galaxies. In spite of this local instability, the global spiral morphology of the gas is maintained over many rotational periods. The Kelvin-Helmholtz (K-H) instability in a shear layer behind the shock is a possible mechanism for the wiggle instability. The Richardson criterion for the K-H stability is expressed as a function of the Mach number, the pitch angle, and strength of the background spiral potential. The criterion suggests that spiral shocks with smaller pitch angles and smaller Mach numbers would be more stable, and this is consistent with the numerical results.Comment: 11 pages, 14 figures, to be published in MNRAS, high quality figures can be downloaded from http://th.nao.ac.jp/~wada/paperlist.htm

    Fast and accurate clothoid fitting

    Full text link
    An effective solution to the problem of Hermite G1G^1 interpolation with a clothoid curve is provided. At the beginning the problem is naturally formulated as a system of nonlinear equations with multiple solutions that is generally difficult to solve numerically. All the solutions of this nonlinear system are reduced to the computation of the zeros of a single nonlinear equation. A simple strategy, together with the use of a good and simple guess function, permits to solve the single nonlinear equation with a few iterations of the Newton--Raphson method. The computation of the clothoid curve requires the computation of Fresnel and Fresnel related integrals. Such integrals need asymptotic expansions near critical values to avoid loss of precision. This is necessary when, for example, the solution of interpolation problem is close to a straight line or an arc of circle. Moreover, some special recurrences are deduced for the efficient computation of asymptotic expansion. The reduction of the problem to a single nonlinear function in one variable and the use of asymptotic expansions make the solution algorithm fast and robust.Comment: 14 pages, 3 figures, 9 Algorithm Table

    Applying inversion to construct rational spiral curves

    Full text link
    A method is proposed to construct spiral curves by inversion of a spiral arc of parabola. The resulting curve is rational of 4-th order. Proper selection of the parabolic arc and parameters of inversion allows to match a wide range of boundary conditions, namely, tangents and curvatures at the endpoints, including those, assuming inflection.Comment: 18 pages, 11 figure

    NGC 1300 Dynamics: I. The gravitational potential as a tool for detailed stellar dynamics

    Full text link
    In a series of papers we study the stellar dynamics of the grand design barred-spiral galaxy NGC~1300. In the first paper of this series we estimate the gravitational potential and we give it in a form suitable to be used in dynamical studies. The estimation is done directly from near-infrared observations. Since the 3D distribution of the luminous matter is unknown, we construct three different general models for the potential corresponding to three different assumptions for the geometry of the system, representing limiting cases. A pure 2D disc, a cylindrical geometry (thick disc) and a third case, where a spherical geometry is assumed to apply for the major part of the bar. For the potential of the disc component on the galactic plane a Fourier decomposition method is used, that allows us to express it as a sum of trigonometric terms. Both even and odd components are considered, so that the estimated potential accounts also for the observed asymmetries in the morphology. For the amplitudes of the trigonometric terms a smoothed cubic interpolation scheme is used. The total potential in each model may include two additional terms (Plummer spheres) representing a central mass concentration and a dark halo component, respectively. In all examined models, the relative force perturbation points to a strongly nonlinear gravitational field, which ranges from 0.45 to 0.8 of the axisymmetric background with the pure 2D being the most nonlinear one. We present the topological distributions of the stable and unstable Lagrangian points as a function of the pattern speed (Ωp)(\Omega_p). In all three models there is a range of Ωp\Omega_p values, where we find multiple stationary points whose stability affects the overall dynamics of the system.Comment: 14 pages, 11 figures, published in MNRA
    • …
    corecore