15,200 research outputs found

    Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation

    Full text link
    We apply multivariate Lagrange interpolation to synthesize polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments

    Macro-element interpolation on tensor product meshes

    Full text link
    A general theory for obtaining anisotropic interpolation error estimates for macro-element interpolation is developed revealing general construction principles. We apply this theory to interpolation operators on a macro type of biquadratic C1C^1 finite elements on rectangle grids which can be viewed as a rectangular version of the C1C^1 Powell-Sabin element. This theory also shows how interpolation on the Bogner-Fox-Schmidt finite element space (or higher order generalizations) can be analyzed in a unified framework. Moreover we discuss a modification of Scott-Zhang type giving optimal error estimates under the regularity required without imposing quasi uniformity on the family of macro-element meshes used. We introduce and analyze an anisotropic macro-element interpolation operator, which is the tensor product of one-dimensional C1−P2C^1-P_2 macro interpolation and P2P_2 Lagrange interpolation. These results are used to approximate the solution of a singularly perturbed reaction-diffusion problem on a Shishkin mesh that features highly anisotropic elements. Hereby we obtain an approximation whose normal derivative is continuous along certain edges of the mesh, enabling a more sophisticated analysis of a continuous interior penalty method in another paper

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis

    A family of C1C^1 quadrilateral finite elements

    Full text link
    We present a novel family of C1C^1 quadrilateral finite elements, which define global C1C^1 spaces over a general quadrilateral mesh with vertices of arbitrary valency. The elements extend the construction by (Brenner and Sung, J. Sci. Comput., 2005), which is based on polynomial elements of tensor-product degree p≥6p\geq 6, to all degrees p≥3p \geq 3. Thus, we call the family of C1C^1 finite elements Brenner-Sung quadrilaterals. The proposed C1C^1 quadrilateral can be seen as a special case of the Argyris isogeometric element of (Kapl, Sangalli and Takacs, CAGD, 2019). The quadrilateral elements possess similar degrees of freedom as the classical Argyris triangles. Just as for the Argyris triangle, we additionally impose C2C^2 continuity at the vertices. In this paper we focus on the lower degree cases, that may be desirable for their lower computational cost and better conditioning of the basis: We consider indeed the polynomial quadrilateral of (bi-)degree~55, and the polynomial degrees p=3p=3 and p=4p=4 by employing a splitting into 3×33\times3 or 2×22\times2 polynomial pieces, respectively. The proposed elements reproduce polynomials of total degree pp. We show that the space provides optimal approximation order. Due to the interpolation properties, the error bounds are local on each element. In addition, we describe the construction of a simple, local basis and give for p∈{3,4,5}p\in\{3,4,5\} explicit formulas for the B\'{e}zier or B-spline coefficients of the basis functions. Numerical experiments by solving the biharmonic equation demonstrate the potential of the proposed C1C^1 quadrilateral finite element for the numerical analysis of fourth order problems, also indicating that (for p=5p=5) the proposed element performs comparable or in general even better than the Argyris triangle with respect to the number of degrees of freedom

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    A general approach to transforming finite elements

    Get PDF
    The use of a reference element on which a finite element basis is constructed once and mapped to each cell in a mesh greatly expedites the structure and efficiency of finite element codes. However, many famous finite elements such as Hermite, Morley, Argyris, and Bell, do not possess the kind of equivalence needed to work with a reference element in the standard way. This paper gives a generalizated approach to mapping bases for such finite elements by means of studying relationships between the finite element nodes under push-forward.Comment: 28 page

    Near-best C2C^2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains

    Full text link
    In this paper, we present new quasi-interpolating spline schemes defined on 3D bounded domains, based on trivariate C2C^2 quartic box splines on type-6 tetrahedral partitions and with approximation order four. Such methods can be used for the reconstruction of gridded volume data. More precisely, we propose near-best quasi-interpolants, i.e. with coefficient functionals obtained by imposing the exactness of the quasi-interpolants on the space of polynomials of total degree three and minimizing an upper bound for their infinity norm. In case of bounded domains the main problem consists in the construction of the coefficient functionals associated with boundary generators (i.e. generators with supports not completely inside the domain), so that the functionals involve data points inside or on the boundary of the domain. We give norm and error estimates and we present some numerical tests, illustrating the approximation properties of the proposed quasi-interpolants, and comparisons with other known spline methods. Some applications with real world volume data are also provided.Comment: In the new version of the paper, we have done some minor revisions with respect to the previous version, CALCOLO, Published online: 10 October 201
    • …
    corecore