1,582 research outputs found

    Reconstruction from Radon projections and orthogonal expansion on a ball

    Full text link
    The relation between Radon transform and orthogonal expansions of a function on the unit ball in \RR^d is exploited. A compact formula for the partial sums of the expansion is given in terms of the Radon transform, which leads to algorithms for image reconstruction from Radon data. The relation between orthogonal expansion and the singular value decomposition of the Radon transform is also exploited.Comment: 15 page

    Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators

    Full text link
    The Radon transform and its adjoint, the back-projection operator, can both be expressed as convolutions in log-polar coordinates. Hence, fast algorithms for the application of the operators can be constructed by using FFT, if data is resampled at log-polar coordinates. Radon data is typically measured on an equally spaced grid in polar coordinates, and reconstructions are represented (as images) in Cartesian coordinates. Therefore, in addition to FFT, several steps of interpolation have to be conducted in order to apply the Radon transform and the back-projection operator by means of convolutions. Both the interpolation and the FFT operations can be efficiently implemented on Graphical Processor Units (GPUs). For the interpolation, it is possible to make use of the fact that linear interpolation is hard-wired on GPUs, meaning that it has the same computational cost as direct memory access. Cubic order interpolation schemes can be constructed by combining linear interpolation steps which provides important computation speedup. We provide details about how the Radon transform and the back-projection can be implemented efficiently as convolution operators on GPUs. For large data sizes, speedups of about 10 times are obtained in relation to the computational times of other software packages based on GPU implementations of the Radon transform and the back-projection operator. Moreover, speedups of more than a 1000 times are obtained against the CPU-implementations provided in the MATLAB image processing toolbox

    Oscillatory and Fourier Integral operators with degenerate canonical relations

    Get PDF
    We mostly survey results concerning the L2L^2 boundedness of oscillatory and Fourier integral operators. This article does not intend to give a broad overview; it mainly focusses on a few topics directly related to the work of the authors.Comment: 37 pages, to appear in Publicacions Mathematiques (special issue, Proceedings of the 2000 El Escorial Conference in Harmonic Analysis and Partial Differential Equations

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a` trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    Four-dimensional tomographic reconstruction by time domain decomposition

    Full text link
    Since the beginnings of tomography, the requirement that the sample does not change during the acquisition of one tomographic rotation is unchanged. We derived and successfully implemented a tomographic reconstruction method which relaxes this decades-old requirement of static samples. In the presented method, dynamic tomographic data sets are decomposed in the temporal domain using basis functions and deploying an L1 regularization technique where the penalty factor is taken for spatial and temporal derivatives. We implemented the iterative algorithm for solving the regularization problem on modern GPU systems to demonstrate its practical use
    • …
    corecore