7,903 research outputs found

    Frame Combination Techniques for Ultra High-Contrast Imaging

    Full text link
    We summarize here an experimental frame combination pipeline we developed for ultra high-contrast imaging with systems like the upcoming VLT SPHERE instrument. The pipeline combines strategies from the Drizzle technique, the Spitzer IRACproc package, and homegrown codes, to combine image sets that may include a rotating field of view and arbitrary shifts between frames. The pipeline is meant to be robust at dealing with data that may contain non-ideal effects like sub-pixel pointing errors, missing data points, non-symmetrical noise sources, arbitrary geometric distortions, and rapidly changing point spread functions. We summarize in this document individual steps and strategies, as well as results from preliminary tests and simulations.Comment: 9 pages, 4 figures, SPIE conference pape

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    A method for filling gaps in solar irradiance and in solar proxy data

    Full text link
    Data gaps are ubiquitous in spectral irradiance data, and yet, little effort has been put into finding robust methods for filling them. We introduce a data-adaptive and nonparametric method that allows us to fill data gaps in multi-wavelength or in multichannel records. This method, which is based on the iterative singular value decomposition, uses the coherency between simultaneous measurements at different wavelengths (or between different proxies) to fill the missing data in a self-consistent way. The interpolation is improved by handling different time scales separately. Two major assets of this method are its simplicity, with few tuneable parameters, and its robustness. Two examples of missing data are given: one from solar EUV observations, and one from solar proxy data. The method is also appropriate for building a composite out of partly overlapping records.Comment: to appear in Astronomy & Astrophysics (2011
    • …
    corecore