3,409 research outputs found

    Unifying type systems for mobile processes

    Full text link
    We present a unifying framework for type systems for process calculi. The core of the system provides an accurate correspondence between essentially functional processes and linear logic proofs; fragments of this system correspond to previously known connections between proofs and processes. We show how the addition of extra logical axioms can widen the class of typeable processes in exchange for the loss of some computational properties like lock-freeness or termination, allowing us to see various well studied systems (like i/o types, linearity, control) as instances of a general pattern. This suggests unified methods for extending existing type systems with new features while staying in a well structured environment and constitutes a step towards the study of denotational semantics of processes using proof-theoretical methods

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    The Varieties of Ought-implies-Can and Deontic STIT Logic

    Get PDF
    STIT logic is a prominent framework for the analysis of multi-agent choice-making. In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC) fulfills a central role. However, in the philosophical literature a variety of alternative OiC interpretations have been proposed and discussed. This paper provides a modular framework for deontic STIT that accounts for a multitude of OiC readings. In particular, we discuss, compare, and formalize ten such readings. We provide sound and complete sequent-style calculi for all of the various STIT logics accommodating these OiC principles. We formally analyze the resulting logics and discuss how the different OiC principles are logically related. In particular, we propose an endorsement principle describing which OiC readings logically commit one to other OiC readings
    • …
    corecore