1,448 research outputs found

    An overview of interpretability logic

    Get PDF

    Generalized Veltman models with a root

    Get PDF
    Provability logic is a nonstandard modal logic. Interpretability logic is an extension of provability logic. Generalized Veltman models are Kripke like semantics for interpretability logic. We consider generalized Veltman models with a root, i.e. r-validity, r-satisfiability and a consequence relation. We modify Fine\u27s and Rautenberg\u27s proof and prove non-compactness of interpretability logic

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Embedded model discrepancy: A case study of Zika modeling

    Full text link
    Mathematical models of epidemiological systems enable investigation of and predictions about potential disease outbreaks. However, commonly used models are often highly simplified representations of incredibly complex systems. Because of these simplifications, the model output, of say new cases of a disease over time, or when an epidemic will occur, may be inconsistent with available data. In this case, we must improve the model, especially if we plan to make decisions based on it that could affect human health and safety, but direct improvements are often beyond our reach. In this work, we explore this problem through a case study of the Zika outbreak in Brazil in 2016. We propose an embedded discrepancy operator---a modification to the model equations that requires modest information about the system and is calibrated by all relevant data. We show that the new enriched model demonstrates greatly increased consistency with real data. Moreover, the method is general enough to easily apply to many other mathematical models in epidemiology.Comment: 9 pages, 7 figure
    corecore